

Environmental Science and Engineering

City of Fort Wayne Mr. Paul Keaton, City Attorney One Main Street Fort Wayne, Indiana 46802

PRIVILEGED AND CONFIDENTIAL

GROUNDWATER INVESTIGATION REPORT

FORMER OMNISOURCE CORPORATION SITE 1610 NORTH CALHOUN STREET FORT WAYNE, ALLEN COUNTY, INDIANA

AVANT Group 508 Incentive Drive Fort Wayne, Indiana 46825 (260) 497-9620

November 14, 2007

Project 07-791-40

TABLE OF CONTENTS

	<u>rage</u>
TABLE OF C	CONTENTSi
LIST OF TAI	3LESi
LIST OF FIG	URESi
LIST OF API	PENDICESi
INTRODUCT	TION
Background	1
Fieldwork	1
Site Geolog	у2
	ATER SAMPLING AND ANALYSIS
Groundwate	er Sampling3
Analytical F	Results3
CONCLUSIO	NS AND RECOMMENDATIONS5
LIMITATION	NS6
	LIST OF TABLES
Table 1 Table 2	VOC, TPH-GRO, TPH-ERO, and SVOC Analytical Data Total Metals and PCB Analytical Data
	LIST OF FIGURES
Figure 1 Figure 2	Site Location Map Monitoring Well Location Map
	LIST OF APPENDICES
Appendix A Appendix B Appendix C	Boring Logs Water Parameter Monitoring Forms Groundwater Analytical Results

PRIVILEGED AND CONFIDENTIAL

Former OmniSource Corporation Site • November 14, 2007 • Page i

INTRODUCTION

Background

AVANT Group (AVANT) was retained by the City of Fort Wayne, Division of Community Development to investigate the potential for dissolved-phase organic and inorganic chemical constituents in the groundwater beneath the former OmniSource Corporation site located at 1610 North Calhoun Street, Fort Wayne, Allen County, Indiana. The site location is identified on Figure 1. Elevated concentrations of total metals and polychlorinated biphenyls (PCBs) were identified in soils on the site during sampling and analyses of site soils performed in August and October 2007.

Fieldwork

On October 25 and 26, 2007, AVANT installed five groundwater monitoring wells on the site. The wells were located on the site in an attempt to collect groundwater samples from up-gradient and down-gradient locations on the site, based upon assumed groundwater flow direction and topography, and in the area of previously identified soil contamination. Monitoring wells MW-1 and MW-2 were located in the apparent down-gradient direction of groundwater flow. MW-1 was advanced near the southwest corner of the former railroad warehouse building on the southeast corner of the site, near the northwest intersection of Fourth Street and North Clinton Street. MW-2 was advanced near the southwest corner of the site, adjacent to the east side of the asphalt parking lot located east of North Calhoun Street and south of Fourth Street. MW-3 was advanced near the northwest corner of the site, south of the property boundary with the former YWCA facility and east of Harrison Street. MW-4 and MW-5 were located in areas where elevated concentrations of contaminants were previously identified in soils. The monitoring well locations are identified on Figure 2.

The monitoring wells were installed using a Geoprobe rig (MW-1 and MW-2) and a truck-mounted drill rig (MW-3, MW-4, and MW-5). The wells were constructed of 2.0 inch PVC with 10 feet of 0.01 slot PVC screen. The screen annular space was filled with coarse sand approximately 1.0 foot above the screen. Approximately 1.0 feet of bentonite was placed on top of the sand pack. The wells were not completed at the surface with vaults or concrete seals. Further, neither the well locations nor the well elevations were surveyed. No groundwater flow direction or gradient was determined for the site. However, groundwater was assumed to flow from the north to the south, toward the St. Mary's River. No specific groundwater tests were performed on the wells to determine groundwater velocity, recharge rates, etc.

No soil samples were collected from the bore holes for chemical analyses. However, the soils encountered in the boreholes were logged for lithologic characteristics. Boring logs for each well location are included in Appendix A.

Groundwater samples were collected from the monitoring wells on October 29, 2007. The groundwater samples were analyzed for volatile organic compounds (VOCs) using SW-846

Method 8260, total petroleum hydrocarbons (TPH) with gasoline range organics (GRO) using SW-846 Method 8015, TPH with extended range organics (ERO) using SW-846 Method 8015M TPH-Ext C₈-C₃₆, semi-volatile organic compounds (SVOCs) using SW-846 Method 8270 BNA/PAH-SIM, total RCRA metals (arsenic, cadmium, chromium, lead, mercury, nickel, and zinc) using EPA Methods 6010 and 7470, and for polychlorinated biphenyls (PCBs) using SW-846 Method 8082.

Site Geology

Boring logs with lithologic descriptions are included in Appendix A. Monitoring wells MW-1, MW-2, and MW-5 are located on the southern-third of the site while MW-3 and MW-4 are located on the northern-third of the site.

The northern—third of the site appears to be underlain by glacially derived sediments consisting mainly of sandy, silty, clay with thin, fine to medium grained sand lens. The sand lenses are typically less than 1.0 inch in thickness. Groundwater identified in the vicinity of MW-4 was identified within these thin sand lenses. Groundwater identified in the vicinity of MW-3 was identified within an approximately 1.0 foot thick layer of coarse sand and gravel. The depth to groundwater below ground surface at MW-3 was measured at approximately 9.26 feet below grade the day after the well installations. The depth to groundwater below ground surface at MW-4 was measured at approximately 16.94 feet.

The southern two-thirds of the site appear to contain coarser grained sediments at depth, possibly derived from fluvial deposition from the historic path of the St. Mary's River. Sediments in the vicinity of MW-5, MW-1, and MW-2 generally consist of glacially-derived clays from the surface to a depth of approximately 8.0 feet below surface grade. Beneath approximately the 8.0 foot depth, the sediments consist of fine to medium grained sand and medium to coarse grained sand. Groundwater was identified within the coarser sediments in MW-1 (18.15 feet), in MW-2 (19.59 feet), and in MW-5 (15.15 feet).

GROUNDWATER SAMPLING AND ANALYSIS

Groundwater Sampling

On October 29, 2007, AVANT sampled the five on-site groundwater monitoring wells. AVANT collected groundwater samples for metals analyses from the monitoring wells using low-flow or micro-purge sampling techniques as identified in the IDEM OLQ Geological Services Memorandum, *Micro-Purge Sampling for Monitoring Wells*, dated January 8, 2003, and the Nonrule Policy Document, *Sampling and Analysis of Ground Water for Metals at Remediation Sites*, dated March 17, 2005. The groundwater samples for VOC, TPH-GRO, TPH-ERO, SVOC, and PCB analyses were collected using pre-decontaminated, plastic bailers with monofilament line. The VOC and TPH-GRO samples were retained in 40 mL VOA vials preserved with hydrochloric acid. The TPH-ERO, SVOC, and PCB samples were retained in un-preserved 1.0 liter amber glass jars. The samples were placed on ice and shipped via Federal Express to ENVision Laboratories, Inc. in Indianapolis, Indiana for analyses. A duplicate sample was also submitted from monitoring well MW-2. Chain-of-custody protocol was followed from sample collection to laboratory delivery. Gauging and relevant well information is included on the Water Parameter Monitoring Forms included in Appendix B.

Analytical Results

The VOC, TPH-GRO, TPH-ERO, and SVOC analytical results are presented in Table 1. The total metals and PCB analytical results are presented in Table 2. Complete groundwater analytical results are presented in Appendix C.

Monitoring wells MW-1, MW-2, and MW-3 did not have detectable chemical constituents identified above the laboratory detection limits for each specific analyte. None of the five wells had detectable concentrations of TPH-GRO or PCBs. Note that the water sample from MW-5 for PCB analysis was damaged at the laboratory and could not be analyzed.

Methyl tertiary butyl ether (MTBE) was the only VOC analyte identified in the groundwater. MTBE was detected in the sample from MW-4 at 0.63 mg/L. The IDEM RISC Residential Default Closure Level for MTBE is 0.04 mg/L and the Industrial Default Closure Level is 0.72 mg/L.

TPH-ERO was detected in the duplicate sample water sample from MW-2 at 0.35 mg/L, in MW-4 at 1.2 mg/L, and in MW-5 at 0.32 mg/L. The IDEM RISC Residential Default Closure Level for TPH-ERO is 0.1 mg/L and the Industrial Closure Level is 1.1 mg/L.

Several SVOCs were identified in the duplicate sample for MW-2. The SVOCs included benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and chrysene. However, these SVOC constituents were detected below the IDEM RISC Residential Default Closure Level for each analyte.

Arsenic was the only metal identified in the groundwater. Arsenic was detected in the sample from MW-5 at 0.02 mg/L. The IDEM RISC Residential and Industrial Default Closure Levels are both 0.01mg/L.

CONCLUSIONS

The October 2007 groundwater sampling did not identify any IDEM RISC Residential or Industrial Default Closure Level exceedences, in the collected water samples, for TPH-GRO, SVOCs, or PCBs. Arsenic was the only total metal identified above the laboratory detection limit for each specific metal analyzed. Arsenic was identified in MW-5 at 0.02 mg/L, which is greater than the IDEM RISC Residential and Industrial Default Closure Levels of 0.01 mg/L. MTBE was the only VOC detected above the laboratory detection limit for each specific VOC analyte. MTBE was detected in the sample from MW-4 at a concentration of 0.63 mg/L, which is greater than the IDEM RISC Residential Default Closure Level of 0.04 mg/L, but below the Industrial Default Closure Level of 0.72 mg/L. TPH-ERO was detected in the duplicate sample from MW-2 at 0.35 mg/L, in MW-4 at 1.2 mg/L, and in MW-5 at 0.32 mg/L. The IDEM RISC Residential Default Closure Level for TPH-ERO is 0.1 mg/L and the Industrial Default Closure Level is 1.1 mg/L.

The direction of groundwater flow beneath the site appears to be in a southerly direction, towards the St. Mary's River. However, this was not confirmed through surveying as the wells were not surveyed.

LIMITATIONS

The services, data, and opinions of AVANT Group, (AVANT) performed for and expressed in this report are for the sole and exclusive use of the City of Fort Wayne. The scope of services for this project may not be appropriate for the needs of others, and the use or re-use of this document and the findings, conclusions, or recommendations expressed herein is not contemplated and at the risk of the user. Reliance by any party on the facts, conclusions, and recommendations in this report is subject to the specific scope of work and the contractual terms and conditions under which this work was authorized and performed.

In performing this investigation, AVANT has striven to conform to generally accepted principles and practices of other consultants conducting similar investigations in the same geographic area. This warranty is in lieu of all others, either expressed or implied. The investigation is limited to the specific project, property, and date of AVANT's site visit, as described in this report, and its findings should not be relied upon by any party to represent conditions at other times or properties. The investigation described in this report was also conducted within the context of agency rules, regulations, and enforcement policies in effect at the time of its execution; later changes in rules, regulations, and policies may result in different conclusions than those expressed in this report.

The scope of the investigation and report was mutually devised by AVANT and the City of Fort Wayne and is not intended as an audit for regulatory compliance. No activity, including sampling, investigation, or evaluation of any material or substance, may be assumed to be included in this investigation unless such activity is expressly considered in the scope of work and this report. Maps and drawings in this report are included only to aid the reader and should not be considered surveys or engineering studies.

The findings of the investigation are probabilities based on AVANT's professional judgment of site conditions as discernible from the limited, and often indirect, information provided by others and obtained or observed by AVANT using the methods specified. AVANT does not warrant the accuracy or completeness of information and independent opinions, conclusions, and recommendations provided or developed by others and assumes no responsibility for documenting conditions detectable with methods or techniques not specified in the scope of work. AVANT's opinion regarding site conditions is not a warranty that all areas within the site and beneath site structures are of the same quality or condition as those observed or sampled.

Sincerely, AVANT Group

Mark Anderson, LPG

Mark Anderson, LPG

Project Manager

OmniSource Corporation, 1610 North Calhoun Street, Fort Wayne, Indiana VOC, TPH-GRO, TPH-ERO, and SVOC Analytical Data Table 1

911,38(11)								
Supplier of the Supplier of th	<0.00011	<0.0001	0.00024	<0.0001	<0.0001	<0.00011	0.0016	0.0016
3119 13 11 (8) OCH 198	<0.00011	<0.0001	0.00039	<0.0001	<0.0001	<0.00011	0.0012	0.0015
Store Il Die Gounos	<0.00011	<0.0001	0.00012	<0.0001	<0.0001	<0.00011	0.0002	0.00039
1.2018	<0.00011	<0.0001	0.00023	< 0.0001	<0.0001	<0.00011	0.0012	0.0039
ONTHOL	QN	ND	QN	ND	ND	ND	Varies ^c	Varies ^c
03031347	<0.1	<0.1	0.35	<0.1	\parallel 12 \parallel	0.32	0.1	1.1
1817	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	0.22	3.0
, 201 /	<0.005	<0.005	<0.005	<0.005	0.63	<0.005	0.04	0.72
	ND	ND	ND	ON.	QN	ND	Varies ^c	Varies ^c
NOTES OF STRINGES	MW-1	MW-2	DUP (MW-2)	MW-3	MW-4	MW-5	RISC Residential	RISC Industrial

All results are reported in mg/L.

RISC Industrial Default Closure Level for Chromium III is 150 mg/L, Chromium IV is 0.31 mg/L.

RISC Industrial and Residential Default Closure Levels are taken from Appendix 1, Default Closure

Tables, IDEM RISC Technical Guide, January 31, 2006 Update.

Bold numbers exceed Residential Default Closure Levels. Bold and shaded cells exceed both Residential and Industrial Default Closure Levels.

^a - Volatile Organic Compounds (VOCs) include 75 individual constituents, including MTBE.

b - Semi-Volatile Organic Compounds (SVOCs) include 67 individual constituents, including those identified to the right.

 $^{\circ}$ - Default Cl
soure Levels are constituent dependent.

Table 2
Total Metals and PCB Analytical Data
OmniSource Corporation, 1610 North Calhoun Street, Fort Wayne, Indiana

Sample Location	Arsenic	Cadmium	Total Chromium	Lead	Mencury	Nickel	Zine
MW-1	< 0.01	< 0.005	< 0.01	< 0.01	< 0.002	< 0.05	< 0.05
MW-2	< 0.01	< 0.005	< 0.01	< 0.01	< 0.002	< 0.05	< 0.05
DUP (MW-2)	< 0.01	< 0.005	< 0.01	< 0.01	< 0.002	< 0.05	< 0.05
MW-3	< 0.01	< 0.005	< 0.01	<0.01	< 0.002	< 0.05	< 0.05
MW-4	< 0.01	< 0.005	< 0.01	< 0.01	< 0.002	< 0.05	< 0.05
MW-5	0.02	< 0.005	< 0.01	< 0.01	< 0.002	< 0.05	< 0.05
RISC Residential	0.01	0.005	0.1	0.015	0.002	0.73	11
RISC Industrial	0.01	0.051	150 {0.31}	0.042	0.031	2.0	31

Notes:

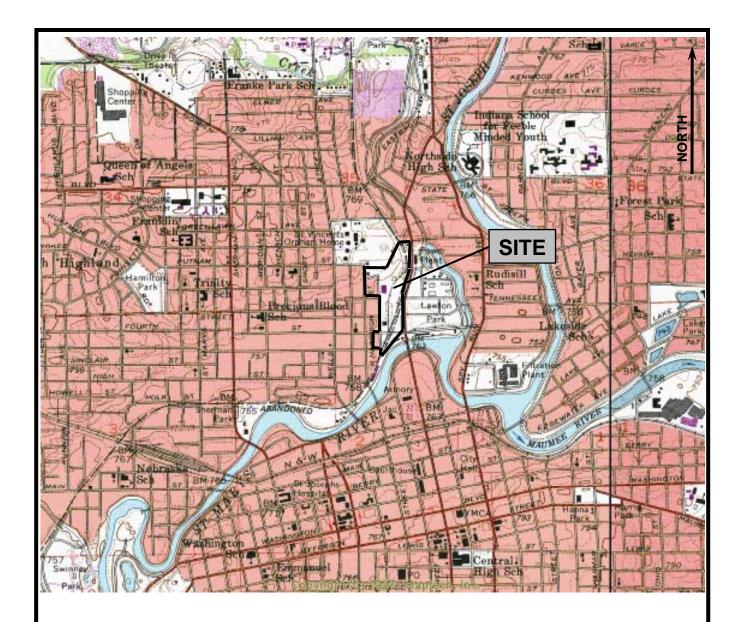
All results are reported in mg/L.

RISC Industrial Default Closure Level for Chromium III is 150 mg/L, Chromium IV is 0.31 mg/L.

RISC Industrial and Residential Default Closure Levels are taken from Appendix 1, Default Closure Tables, IDEM RISC Technical Guide, January 31, 2006 Update.

Bold and shaded cells exceed both Residential and Industrial Default Closure Levels.

Sample Location	Polychlorinated Biphenyls
MW-1	<0.00005
MW-2	<0.00005
DUP (MW-2)	<0.00005
MW-3	<0.00005
MW-4	<0.00005
MW-5	Not Tested ^a
RISC Residential	0.0005
RISC Industrial	0.0014


Notes:

All results are reported in mg/L.

RISC Industrial Default Closure Level for Chromium III is 150 mg/L, Chromium IV is 0.31 mg/L. RISC Industrial and Residential Default Closure Levels are taken from Appendix 1, Default Closure Tables, IDEM RISC Technical Guide, January 31, 2006 Update.

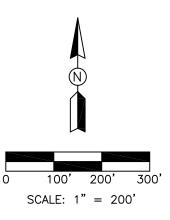
^a - Sample Not Tested for PCBs due to bottle breakage at laboratory.

SCALE: 1 INCH = 2,000 FT

SOURCE: FORT WAYNE WEST, INDIANA, USGS TOPOGRAPHIC QUADRANGLE MAP, 1963, REVISED 1981 FORT WAYNE EAST, INDIANA, USGS TOPOGRAPHIC QUADRANGLE MAP, 1963, REVISED 1981

Environmental Science and Engineering 508 Incentive Drive, Fort Wayne, IN 46825 (260) 497-9620 Fax: (260) 497-9720

Project Task Size Date 07-791 40 A 11/14/07


Figure 1 - Site Location Map
Former OmniSource Corporation Site
1610 N. Calhoun Street
Fort Wayne, Indiana

CLIENT

City of Fort Wayne Division of Community Development

LTR DATE DESCRIPTION OF CHANGE DRN CHK'D

Environmental Science and Engineering

508 Incentive Drive, Fort Wayne, IN 46825 (260)497-9620 fax: (260)497-9670 www.avantgrp.com

MONITORING WELL LOCATIONS FORMER OMNISOURCE FACILITY 1610 NORTH CALHOUN STREET FORT, WAYNE, INDIANA

CLIENT:

CITY OF FORT WAYNE-COMMUNITY DEVELOPMENT DIVISION FORT WAYNE, INDIANA

DRAWN BY:	MKL	DATE:	11/16/07	
CHECKED BY:	MRA	DATE:	11/16/07	1
APPROVED BY:	MRA	DATE:	11/16/07	(

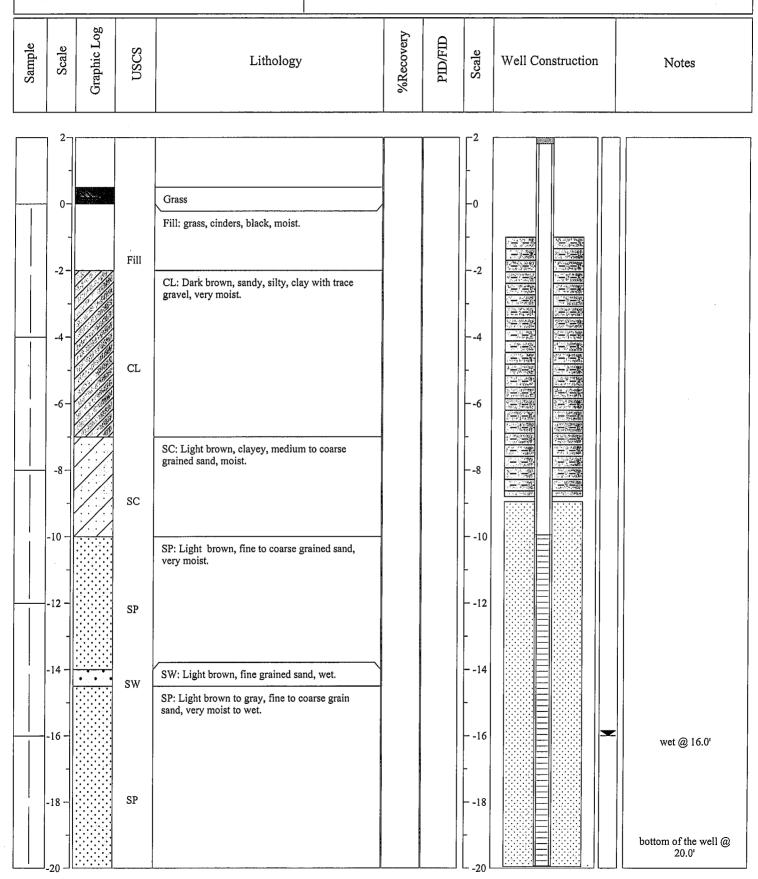
07-791

TASK SIZE FIG. NO. **2**

APPENDIX A

Boring Logs

Monitoring Well: MW-1

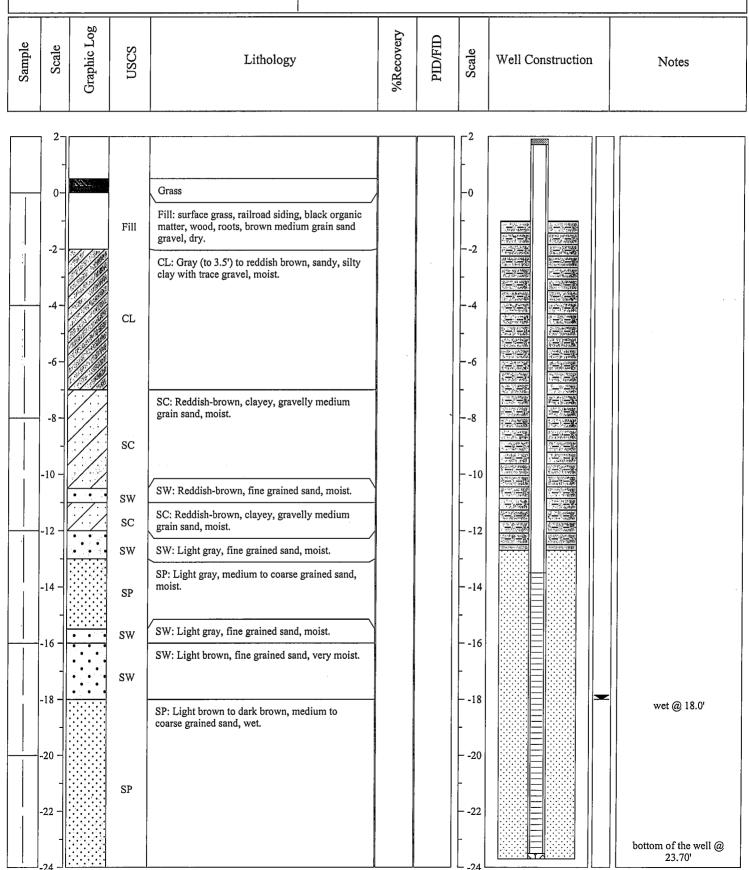

Logged By: MRA

Date Drilled: 10/25/07

Drilled By: SCS

Initial Water Level (ft): 16.0'
Final Water Level (ft): 18.15'

Total Depth of Boring (ft): 20.0'

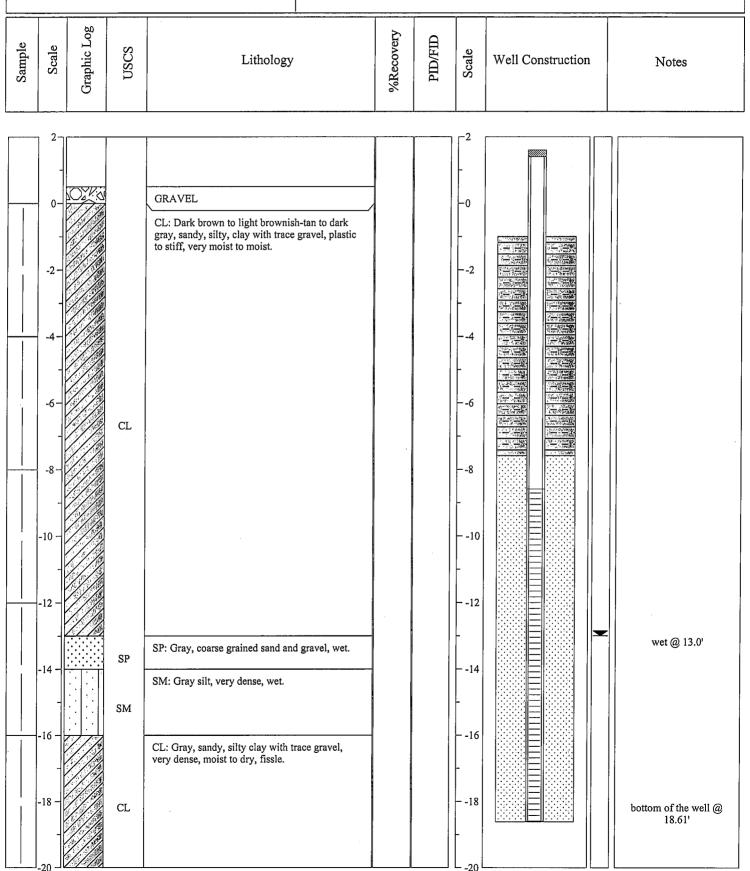

Monitoring Well: MW-2

Logged By: MRA
Date Drilled: 10/25/07

Initial Water Level (ft): 18.0' Final Water Level (ft): 19.59'

Drilled By: SCS

Total Depth of Boring (ft): 24.0'

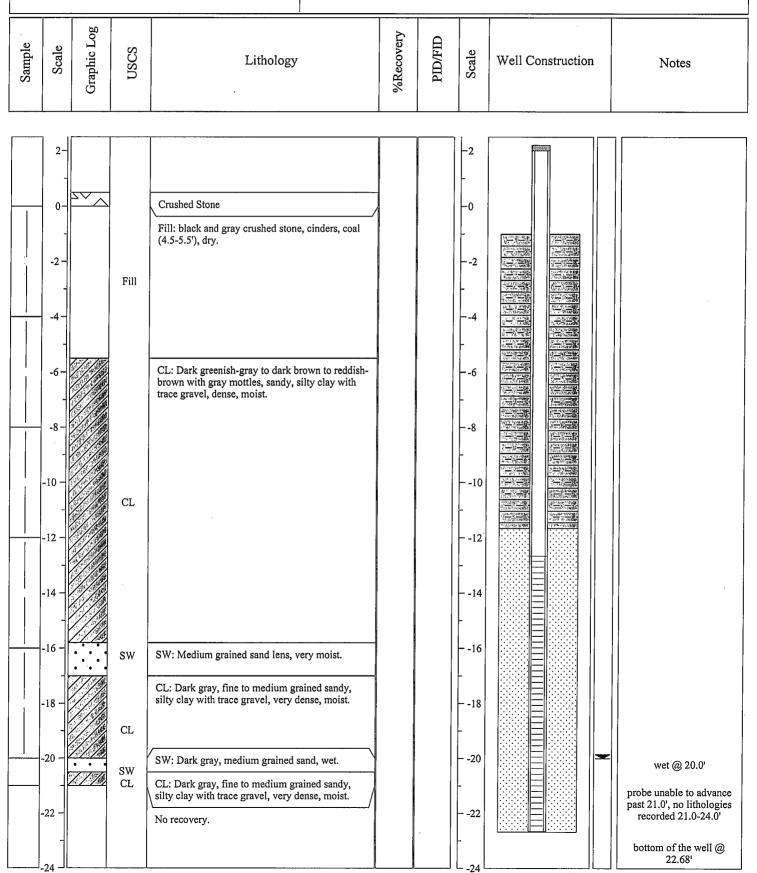


Monitoring Well: MW-3

Logged By: MRA Date Drilled: 10/25/07

Drilled By: SCS

Initial Water Level (ft): 13.0' Final Water Level (ft): 9.26' Total Depth of Boring (ft): 20.0'

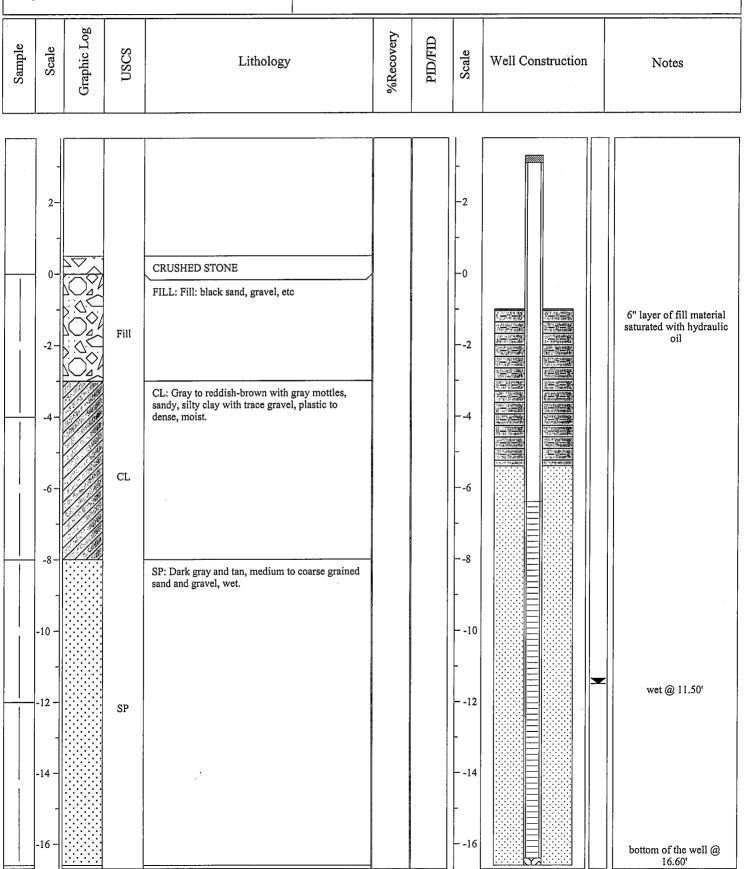

Monitoring Well: MW-4

Logged By: MRA
Date Drilled: 10/25/07

Drilled By: SCS

Initial Water Level (ft): 20.0' Final Water Level (ft): 16.94'

Total Depth of Boring (ft): 24.0'



Monitoring Well: MW-5

Logged By: MRA
Date Drilled: 10/25/07

Initial Water Level (ft): 11.5'
Final Water Level (ft): 15.15'

Drilled By: SCS Total Depth of Boring (ft): 16.0'

APPENDIX B

Water Parameter Monitoring Forms

			Δħ Gro	Toup, Inc.							
			·						ıg Form		
PROJEC DATE:	TNO.: 05	7~791~ 7 SAMPL	40 proji ers:	ECT NAM M'P.A	IE: <u></u> WEATH	L. Way	re/Ou 60°	uni Sou Sum	weenel n	.: <u>HW</u>	
WELL & RÉF. PO WELL D HEIGHT FREE PR INTAKE EQUIPM	PURGIN INT: 10 IA::(In):_ OF WAT ODUCT DEPTH (ENT: W	C TO' Z WA ER COLUM PRESENT (Ft. BELOW SUBME 'ATER QUA	MATION: TAL DEP' TER DEP MN (Ft.): Ft): TOC): RSIBLE P ALITY ME	TH: 19 TH: 18 Z1 UMP STER(S):_	,95 . 29 .66 	SCREEN L HEIGHT C DEPTH TC WELL HEA ADDER PUN ST	ENGTH (Ft) F TOC ABO SCREEN E ADSPACE R MP	DE D	PTH (BGL):OW GRADE (OC (Ft):	7.95 TO FID: BAILER SURFACE	19.95 .0 21.95
Time	Temp.	Or Cond. (mS/cm)	D.O. (mg/L)	pH (s.u.)	-	Turbidity	Rate (mL/Min)	DTW (Ft.)	Comments		
1655 1700	15.33 15.54 15.47	1.196	5.38	7.49 7.47	102		,,,				
1705 1710	15.37 15.37	1.181		7.45 7.44							
	G	amp	ed	(مو)	13	410					
		V				-					
Sampling (Observatio	ons:									

Sampling Observations:_

Water Parameter Monitoring Form

PROJEC	CT No.:OF	1-791-	46 PROJI	ECT NAM	IE: 47.	Wayne	10mm	.1	WELL No.:_	Mw	-2
DATE:	0 29 0	1 SAMPL	ers: W	RU	WEATH	ER: 60	9	unny	WELL No.:_		·.
WELL & PURGING INFORMATION: 23;70 REF. POINT: TOTAL DEPTH: 25:60 WELL DIA::(In): WATER DEPTH: 19.68 HEIGHT OF WATER COLUMN (Ft.): 5.92 HEIGHT OF WATER COLUMN (Ft.): TO INTAKE DEPTH (Ft. BELOW TOC): 24 EQUIPMENT: SUBMERSIBLE PUMP WATER QUALITY METER(S): WATER QUALITY METER(S): SCREEN LENGTH (Ft): 10 DEPTH (BGL): 15:60 WELL BROWN TOC (Ft): 15:60 WELL HEADSPACE READING IN ppm (PID/FID): WATER QUALITY METER(S): SUBMERSIBLE PUMP WATER QUALITY METER(S): WATER QUALITY METER (S): WELL PURGED DRY METHOD: LOW-FLOW 3 WELL VOLS. WELL PURGED DRY TOTAL VOL. PURGED (Gal.): 2											
			1 70	l vv	ODD	Turbidity	Rate	DTW	Comments		
Time	Temp.	Sp. Cond. Or Cond. (mS/cm)	D.O. (mg/L)	pH (s.u.)	ORP (mV)		(mL/Min)				
1543	16.12	2.00	1.39	7.17	78	178	180				
1548	16.10	2.02	1.10	7.10	76.4	147	/				
1553	15.94		0.97		67.5	152	/				
1225	15,78										
	15,81					9.6	1				
1608	15,77	2.05	0.82	6.77	65	4,4	• •				
					· .						
							-				
	· ·			·		<u>'</u>					•
ļ.——						_					
	Ba	mple	7 (0) 1	610) .				•	
	1				_			· · · · · ·			

Water Parameter Monitoring Form

	. Wayne / Omni Source WBLL No.: MW-3							
DATE: 10/29/07 SAMPLERS: MRA WEATH	IER: 50° SUMY							
WELL & PURGING INFORMATION: 18.61	8,6 18,6							
REF. POINT: TOTAL DEPTH: 20.21 SCREEN LENGTH (Ft): 10 DEPTH (BGL): 20.2 TO 10.2								
WELL DIA.:(In): 2 WATER DEPTH: 8.87 HEIGHT OF TOC ABOVE/BELOW GRADE (Ft): 1.6 HEIGHT OF WATER COLUMN (Ft.): 11.33 DEPTH TO SCREEN BELOW TOC (Ft): 10.2 TO 20.2								
	WELL HEADSPACE READING IN ppm (PID/FID):							
FREE PRODUCT PRESENT (Ft):TO	WELL READSPACE READING IN ppill (FIDATID).							
INTAKE DEPTH (Ft. BELOW TOC): 19	adder pump <u>x</u> peristaltic <u>s</u> bailer							
EQUIPMENT:SUBMERSIBLE FOMFBL.	or 190 ml/Min							
	V-THRU CELLOPEN CONTAINER AT SURFACE							
	WELL PURGED DRY TOTAL VOL. PURGED (Gal.): 5							
MBMOD. <u>A</u> BOW 12011								
Time Temp. Sp. Cond. D.O. pH ORP	Turbidity Rate DTW Comments							
Or Cond.								
(eC) (mS/cm) (mg/L) (s.u.) (mV)	(mLMin) (Ft.)							
1008 16.35 1.109 8.56 7.77 142.9	422 190							
1015 16.27 1.109 5.01 7.56 136.5	311							
1020 16.01 1.106 4.74 7.44 98	273							
1026 16.11 1.101 4.40 7.36 0.1	272							
1032 16.13 1.102 4.06 7.31 -16.4	291							
1042 16.29 1.094 367 7.25 -47.6								
1048 16.42 1090 3.46 7.23-54.2	307							
1051 16.49 1.088 3.52 7.23-56.6								
1054 16.59 1.085 3.19 7.21-59.4	291							
1057 16.56 1.084 3.25 7.22 -60.3	1 1							
1100 16.63 1.084 3.20 7.21 -63.3	282							
1103 16.74 1.079 3.10 7.20 -66.2								
	· · · · · · · · · · · · · · · · · · ·							
Sampled (2, 1105								
Sampling Observations: Lab grade water was 274 in turbidity meter								
Sampling Observations:	A May SII IN LOADING WAS							

		ΔV		up, Inc.							
PROJEC DATE:_ 1	0 :.00 T	7-791-4 7-34 SAMPL	40 proji ers:						ng Forn		w~4
REF. POI WELL DI HEIGHT FREE PR INTAKE	INT: 10 IA.:(In):_ OF WAT ODUCT DEPTH (ENT:		TAL DEPTATER DEPTATE (TER DEPTATE) TOC): RSIBLE P	TH: 11. 13.6 10 21 UMP	26 22 — BL/	HEIGHT O DEPTH TO WELL HEA ADDER PUN	F TOC ABO SCREEN I ADSPACE I	OVE/BELA BELOW T READING	OW GRADE	(Ft): 4,88)/FID):	то 24,88
METHOL	_		HOLE ME 3 W	TER 👱	r flow	/-THRU CEI /ELL PURG			Comments	SURFAC	E (al.):
	(°C)		1	(s.u.)	 	,	(mL/Min)	(F t)			
	15.16	2.04		7.00	-8	56 52	180			•	
1308			3.81			56	1				
		2,04		700		54					
		2.04	3.60	7.00	-12	55			· · · · · · · · · · · · · · · · · · ·		
		7.04		7,00	-12	56					
1324	15.14	2.04	3.47	7.00	-12	56	<u> </u>	-			
		·									
	 :									<u></u>	
									<u> </u>		
						`					0.
Sampling (Observatio	ons:	San	pled	0	13	30				

Sampling Observations:

Water Parameter Monitoring Form

PROJEC	CT No.: 05. 10/29/0	7-791-1 7 sampl	<u>0</u> proj ers:	ECT NAM	1E: 1 WEATH	Way	re Om	ni ny	WELL N	No.:_ M	w-5	_
REF. PC WELL I HEIGHT FREE PI INTAKE EQUIPM	DINT: TO DIA.:(In):_ COF WAT RODUCT DEPTH (MENT: W	/ATER QU/ DOWN-	TAL DEP' TER DEP' IN (Ft.): TOC): RSIBLE P ALITY ME	TH: 15 TH: 15 4.0 18 UMP ETER(S):	1.9 .27 .3 	HEIGHT O DEPTH TC WELL HEA ADDER PUN THRU CEI	F TOC ABO SCREEN E ADSPACE F MP LL O	DVE/BELO BELOW TO READING PERIS PEN CON	PTH (BGL):_ DW GRADE OC (Ft): IN ppm (PIC TALTIC TAINER AT	(Ft):	3.3 + _TO_19	<u>,</u> 9 -
Time 410 417 425 43 437 443	Temp. /6.61 6.72 6.74 6.77 6.80 6.78	Or Cond (ms/cm) 1.537 1.504 1.492 1.48	2.40 0.78 0.70 0.64 0.64	7.12 7.04 7.02 7.00 6.99	(mV) -97 -99 -101 -100 -100	96.2 78.6 82 72 86	Rate (mL/Min)	(pt)	Comments			
	So	imple	d () ,	144	14						

YSI 556 Calibration Form

Date: 10-29-07
Personnel: 10-

·	Calibration	Instrument Reading	Instrument Reading	
Parameter	Standard Value	Before Calibration	After Calibration	Calibration Accepted
ORP	238.8 mV		238.8	Yes/No
Conductivity	4.49 mS/cm		4.498	© e/No
Conductivity	1413 μs/cm			Yes/No
pН	4.00 s.u.		4.00	YENO NO
pН	7.00 s.u.			Yes/No
pН	10.00 s.u.		10.00	₹ 9/No
DO	% 0 ₂		101.4%	Ye/No

Notes:	
•	

¹Temperature Effects On Redox Potential Measurements Of Zobell Solution ORP Standard

Temperature (°C)	ORP Value (mV)	Temperature (°C)	ORP Value (mV)
10	250.5	23	233.6
11	249.2	24	232.3
12	247.9	25	231.0
13	246.6	26	229.7
14	245.3	27	228.4
15	244.0	28	227.1
16	242.7	29	225.8
17	241.4	30	224.5
18	240 1	31	223.2
19	238.8	32	221.9
20	237.5	33	220.6
21	236.2	34	219.3
22	234.9	35	218.0

APPENDIX C

Groundwater Analytical Results

ENVision Laboratories, Inc.

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

Mr. Mark Anderson **Avant Group** 508 Incentive Drive Fort Wayne, IN 46825

November 2, 2007

ENVision Project Number: 2007-2225 Client Project Name: Ft. Wayne/Omni

Dear Mr. Anderson.

Please find the attached analytical report for the samples received October 30, 2007. All test methods performed were fully compliant with local, state, and federal EPA methods unless otherwise noted. The project was analyzed as requested on the enclosed chain of custody record. Please review the comments section for additional information about your results or Quality Control data. Metals analyses are not included in the NELAC certification.

Feel free to contact me if you have any questions or comments regarding your analytical report or service.

Thank you for your business. ENVision Laboratories looks forward to working with you on your next project.

Yours Sincerely,

Cheryl A. Crum

Director of Project Management ENVision Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100454

ENVision Laboratories, Inc.

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8260

Prep Method:

5030B

Analytical Batch:

110107VW

Client Sample ID:

MW-1

Sample Collection Date/Time: 10/29/07 17:10

Envision Sample Number:

7-14695

Sample Received Date/Time: 10/30/07 9:50

0.005

0.005

0.005

0.005

0.005

0.005

0.1

0.005

Dibromochloromethane

Dibromomethane

1.2-Dichlorobenzene

1.3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dibromoethane (EDB)

trans-1,4-Dichloro-2-butene

Dichlorodifluoromethane

water Sample Matrix: Sample Results (mg/L) Reporting Limit (mg/l) Flags Compounds 0.1 < 0.1 Acetone < 0.1 0.1 Acrolein 0.1 < 0.1 Acrylonitrile 0.005 < 0.005 Benzene 0.005 < 0.005 Bromobenzene 0.005 < 0.005 Bromochloromethane 0.005 < 0.005 Bromodichloromethane 0.005 < 0.005 Bromoform 0.005 < 0.005 Bromomethane 0.05 < 0.050 n-Butanol 0.01 < 0.01 2-Butanone (MEK) 0.005 < 0.005 n-Butylbenzene 0.005 < 0.005 sec-Butvlbenzene 0.005 tert-Butylbenzene < 0.005 0.005 < 0.005 Carbon Disulfide 0.005 < 0.005 Carbon Tetrachloride 0.005 < 0.005 Chlorobenzene 0.005 < 0.005 Chloroethane 0.05 < 0.050 2-Chloroethylvinylether 0.005 < 0.005 Chloroform < 0.005 0.005 Chloromethane 0.005 < 0.005 2-Chlorotoluene 0.005 < 0.005 4-Chlorotoluene 0.005 < 0.005 1,2-Dibromo-3-chloropropane

< 0.005

< 0.005 < 0.005

< 0.005

< 0.005

< 0.005

< 0.1

< 0.005

Page 2 of 63

8260 continued...

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8260 continuea	Sample Bequite (mg/l)	Reporting Limit (mg/l)	Flags	ŧ
Compounds	Sample Results (mg/L) < 0.005	0.005	1 1035	2
1,1-Dichloroethane	< 0.005	0.005		
1,2-Dichloroethane	< 0.005	0.005		
1,1-Dichloroethene		0.005		
cis-1,2-Dichloroethene	< 0.005	0.005		
trans-1,2-Dichloroethene	< 0.005	0.005		
1,2-Dichloropropane	< 0.005	0.005		
1,3-Dichloropropane	< 0.005			
2,2-Dichloropropane	< 0.005	0.005		
1,1-Dichloropropene	< 0.005	0.005		
cis-1,3-Dichloropropene	< 0.005	0.005		
trans-1,3-Dichloropropene	< 0.005	0.005		
Ethylbenzene	< 0.005	0.005		
Ethyl methacrylate	< 0.1	0.1		
Hexachloro-1,3-butadiene	< 0.005	0.005		
n-Hexane	< 0.01	0.01		
2-Hexanone	< 0.01	0.01		•
Iodomethane	< 0.01	0.01		
Isopropylbenzene (Cumene)	< 0.005	0.005		
p-Isopropyltoluene	< 0.005	0.005		i.
Methylene chloride	< 0.005	0.005		
4-Methyl-2-pentanone (MIBK)	< 0.01	0.01		
Methyl-tert-butyl-ether	< 0.005	0.005	4	
Naphthalene	< 0.005	0.005		
n-Propylbenzene	< 0.005	0.005		
Styrene	< 0.005	0.005		
1,1,1,2-Tetrachloroethane	< 0.005	0.005		
1,1,2,2-Tetrachloroethane	< 0.005	0.005		
Tetrachloroethene	< 0.005	0.005		
Toluene	< 0.005	0.005		
1,2,3-Trichlorobenzene	< 0.005	0.005		
1,2,4-Trichlorobenzene	< 0.005	0.005		•
1,1,1-Trichloroethane	< 0.005	0.005		
1,1,2-Trichloroethane	< 0.005	0.005		
Trichloroethene	< 0.005	0:005		
Trichlorofluoromethane	< 0.005	0.005		
1,2,3-Trichloropropane	< 0.005	0.005		
1,2,4-Trimethylbenzene	< 0.005	0.005	•	
1,3,5-Trimethylbenzene	< 0.005	0.005		
Vinyl acetate	< 0.01	0.01		
•	< 0.002	0.002		
Vinyl chloride	< 0.005	0.005	•	
Xylene, M&P	< 0.005	0.005	,	
Xylene, Ortho	< 0.01	0.01		,
Xylene (Total)	55.6	111%		
Dibromofluoromethane (surrogate)	44	88%	•	
1,2-Dichloroethane-d4 (surrogate)	52.6	105%		
Toluene-d8 (surrogate)	56.6	113%		
4-bromofluorobenzene (surrogate)	11/01/07/11:35	. 11070		Page 3 of 63
Analysis Date/Time:	11/01/07/11:30	ts. Our Passion.		i age 3 0i 03
Analyst Initials	igour Projec	ts. Vui Fussiviii		

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239

Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8015M TPH-Ext C8-C36

Prep Method:

3520C

Analytical Batch:

110107E

Client Sample ID:

MW-1

Sample Collection Date/Time:

10/29/07 17:10

Envision Sample Number:

Sample Matrix:

7-14695 water

Sample Received Date/Time:

10/30/07 9:50

Reporting Limit (mg/L)

Flags

TPH--Extended C8-C36

Compounds

Sample Results (mg/L)

< 0.1

0.1

o-Terphenyl (surrogate) Analysis Date/Time:

Analyst Initials:

Date Extracted:

Initial Sample Volume:

Final Volume:

87%

11/1/2007 21:58

gjd

10/31/2007

830 mL

1.0 mL

ENVision Laboratories, Inc.

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8015 GRO

Prep Method:

5030

Analytical Batch:

103107GW

Client Sample ID:

MW-1

Sample Collection Date/Time:

10/29/07 17:10

Envision Sample Number:

7-14695

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

Reporting Limit (mg/L)

Compounds TPH-Gasoline

Analyst Initials

Sample Results (mg/L) < 0.22

0.22

Flags

4-bromofluorobenzene (surrogate)

Analysis Date/Time:

98%

10/31/07/19:39

tjg

ENVision Laboratories, Inc.

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8270 BNA/PAH-SIM

Prep Method:

3520C

Analytical Batch:

110107B

Client Sample ID:

MW-1

Sample Collection Date/Time:

10/29/07 17:10

Envision Sample Number:

7-14695

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

Compounds	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Aniline	< 0.011	0.011	
Benzoic Acid	< 0.054	0.054	
Benzyl Alcohol	< 0.022	0.022	
4-Bromophenylphenyl ether	< 0.011	0.011	•
Butylbenzylphthalate	< 0.011	0.011	
Carbazole	< 0.022	0.022	
4-Chloro-3-methylphenol	< 0.022	0.022	
4-Chloroaniline	< 0.022	0.022	
bis(2-Chloroethoxy)methane	< 0.011	0.011	
bis(2-Chloroethyl)ether	< 0.011	0.011	
bis(2-Chloroisopropyl)ether	< 0.011	0.011	
2-Chloronaphthalene	< 0.011	0.011	
2-Chlorophenol	< 0.011	0.011	
4-Chlorophenylphenyl ether	< 0.011	0.011	
Dibenzofuran	< 0.011	0.011	
1,2-Dichlorobenzene	< 0.011	0.011	
1,3-Dichlorobenzene	< 0.011	0.011	
1,4-Dichlorobenzene	< 0.011	0.011	
3,3-Dichlorobenzidine	< 0.022	0.022	
2,4-Dichlorophenol	< 0.011	0.011	
Diethylphthalate	< 0.011	0.011	
2,4-Dimethylphenol	< 0.011	0.011	
Dimethylphthalate	< 0.011	0.011	
Di-n-butylphthalate	< 0.011	0.011	4
4,6-Dinitro-2-methylphenol	< 0.054	0.054	. • •
2,4-Dinitrophenol	< 0.054	0.054	
2,4-Dinitrotoluene	< 0.011	0.011	
2,6-Dinitrotoluene	< 0.011	0.011	
Di-n-octylphthalate	< 0.011	0.011	
bis(2-Ethylhexyl)phthalate	< 0.0054	0.0054	
Hexachloro-1,3-butadiene	< 0.011	0.011	
Hexachlorobenzene	< 0.0054	0.0054	
Hexachlorocyclopentadiene	< 0.027	0.027	
Hexachloroethane	< 0.011	0.011	Pa
		-t- O Deceien	

Your Projects. Our Passion.

Page 6 of 63

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

<u>Flags</u>

8270 Co.	ntinued
----------	---------

82/U Continuea		
<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/L)
Isophorone	< 0.011	0.011
2-Methylphenol (o-Cresol)	< 0.011	0.011
3&4-Methylphenol	< 0.022	0.022
2-Nitroaniline	< 0.054	0.054
3-Nitroaniline	< 0.054	0.054
4-Nitroaniline	< 0.054	0.054
Nitrobenzene	< 0.011	0.011
2-Nitrophenol	< 0.011	0.011
4-Nitrophenol	< 0.054	0.054
N-Nitroso-di-n-propylamine	< 0.011	0.011
N-Nitrosodiphenylamine	< 0.011	0.011
Pentachlorophenol	< 0.054	0.054
Phenol	< 0.011	0.011
1,2,4-Trichlorobenzene	< 0.011	0.011
2,4,5-Trichlorophenol	< 0.011	0.011
2,4,6-Trichlorophenol	< 0.011	0.011
2-Fluorophenol (surrogate)	51%	
Phenol-d6 (surrogate)	76%	
Nitrobenzene-d5 (surrogate)	79%	
2-Fluorobiphenyl (surrogate)	82%	•
2,4,6-Tribromophenol (surrogate)	53%	
p-Terphenyl-d14 (surrogate)	43%	•
Analysis Date/Time:	11-01-07/17:38	
Analyst Initials:	bds	
Date Extracted:	10/30/2007	
Initial Sample Volume:	930 mL	•
Final Volume:	1.0 mL	

PAH-SIM Analytical Batch:

110107P

Compounds	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Acenaphthene	< 0.0011	0.0011	
Acenaphthylene	< 0.0011	0.0011	
Anthracene	< 0.00011	0.00011	•
Benzo(a)anthracene	< 0.00011	0.00011	
Benzo(a)pyrene	< 0.00011	0.00011	
Benzo(b)fluoranthene	< 0.00011	0.00011	
Benzo(g,h,i)perylene	< 0.00011	0.00011	
Benzo(k)fluoranthene	< 0.00011	0.00011	
Chrysene	< 0.00011	0.00011	
Dibenzo(a,h)anthracene	< 0.00011	0.00011	
Fluoranthene	< 0.0011	0.0011	
Fluorene	< 0.0011	0.0011	
Indeno(1,2,3-cd)pyrene	< 0.000024	0.000024	
2-methylnaphthalene	< 0.0011	0.0011	
Naphthalene	< 0.0011	0.0011	
Phenanthrene	. < 0.0011	0.0011	
Pyrene	< 0.0011	0.0011	
Analysis Date/Time:	11-01-07/18:20		
Analyst Initials:	bds	,	F

ENVision Laboratories, Inc.

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

6010/7470

Prep Method:

3010A

Client Sample ID:

MW-1

Sample Collection Date/Time:

17:10

Envision Sample Number:

7-14695

Sample Received Date/Time:

10/29/07 10/30/07

9:50

Sample Matrix:

water

Compounds	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
Arsenic	< 0.01	0.01	
Cadmium	< 0.005	0.005	
Chromium	< 0.01	0.01	•
Lead	< 0.01	0.01	
Mercury	< 0.002	0.002	
Nickel	< 0.05	0.05	
Zinc	< 0.05	0.05	
ICP Analysis Date/Time:	10/31/2007 12:08	Hg Analysis Date/Time:	10/30/2007 13:43
Analyst Initials:	gjd	Hg Analyst Initials:	gjd
Date Digested:	10/30/2007	Date Digested:	10/30/2007
Initial Sample Volume:	50 ml	Initial Sample Volume:	50 mL
Final Volume:	50 ml	Final Volume:	50 mL
Analytical Batch:	103107icp	Analytical Batch:	103007hgw

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method: Prep Method:

8260 5030B

Analytical Batch:

110107VW

Client Sample ID:

MW-2

Sample Collection Date/Time: 10/29/07 16:10

Envision Sample Number:

7-14696

Sample Received Date/Time: 10/30/07 9:50

Sample Matrix:

water

<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
Acetone	< 0.1	0.1	
Acrolein	< 0.1	0.1	
Acrylonitrile	< 0.1	0.1	
Benzene	< 0.005	0.005	
Bromobenzene	< 0.005	0.005	
Bromochloromethane	< 0.005	0.005	
Bromodichloromethane	< 0.005	0.005	•
Bromoform	< 0.005	0.005	
Bromomethane	< 0.005	0.005	
n-Butanol	< 0.050	0.05	
2-Butanone (MEK)	< 0.01	0.01	
n-Butylbenzene	< 0.005	0.005	
sec-Butylbenzene	< 0.005	0.005	
tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride	< 0.005	0.005	
Chlorobenzene	< 0.005	0.005	
Chloroethane	< 0.005	0.005	
2-Chloroethylvinylether	< 0.050	0.05	
Chloroform	< 0.005	0.005	
Chloromethane	< 0.005	0.005	. ·
2-Chlorotoluene	< 0.005	0.005	
4-Chlorotoluene	< 0.005	0.005	
1,2-Dibromo-3-chloropropane	< 0.005	0.005	
Dibromochloromethane	< 0.005	0.005	,
1,2-Dibromoethane (EDB)	< 0.005	0.005	
Dibromomethane	< 0.005	0.005	
1,2-Dichlorobenzene	< 0.005	0.005	
1,3-Dichlorobenzene	< 0.005	0.005	
1,4-Dichlorobenzene	< 0.005	0.005	
trans-1,4-Dichloro-2-butene	< 0.1	0.1	
Dichlorodifluoromethane	< 0.005	0.005	

Analyst Initials

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

	•	· ·	
8260 continued			
<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	
1,1-Dichloroethene	< 0.005	0.005	
cis-1,2-Dichloroethene	< 0.005	0.005	
trans-1,2-Dichloroethene	< 0.005	0.005	•
1,2-Dichloropropane	< 0.005	0.005	·
1,3-Dichloropropane	< 0.005	0.005	•
2,2-Dichloropropane	< 0.005	0.005	
1,1-Dichloropropene	< 0.005	0.005	
cis-1,3-Dichloropropene	< 0.005	0.005	
trans-1,3-Dichloropropene	< 0.005	0.005	
Ethylbenzene	< 0.005	0.005	
Ethyl methacrylate	< 0.1	0.1	•
Hexachloro-1,3-butadiene	< 0.005	0.005	•
n-Hexane	< 0.01	0.01	
2-Hexanone	< 0.01	0.01	
Iodomethane	< 0.01	0.01	
Isopropylbenzene (Cumene)	< 0.005	0.005	
p-Isopropyltoluene	< 0.005	0.005	,
Methylene chloride	< 0.005	0.005	
4-Methyl-2-pentanone (MIBK)	< 0.01	0.01	
Methyl-tert-butyl-ether	< 0.005	0.005	•
Naphthalene	< 0.005	0.005	
n-Propylbenzene	< 0.005	0.005	
• •	< 0.005	0.005	
Styrene 1,1,1,2-Tetrachloroethane	< 0.005	0.005	
1,1,2,2-Tetrachloroethane	< 0.005	0.005	•
Tetrachloroethene	< 0.005	0.005	
·	< 0.005	0.005	
Toluene	< 0.005	0.005	
1,2,3-Trichlorobenzene	< 0.005	0.005	•
1,2,4-Trichlorobenzene	< 0.005	0.005	
1,1,1-Trichloroethane	< 0.005	0.005	
1,1,2-Trichloroethane	< 0.005	0.005	
Trichloroethene	•	0.005	
Trichlorofluoromethane	< 0.005	0.005	•
1,2,3-Trichloropropane	< 0.005	0.005	
1,2,4-Trimethylbenzene	< 0.005	•	
1,3,5-Trimethylbenzene	< 0.005	0.005	
Vinyl acetate	< 0.01	0.01	
Vinyl chloride	< 0.002	0.002	
Xylene, M&P	< 0.005	0.005	
Xylene, 0rtho	< 0.005	0.005	•
Xylene (Total)	< 0.01	0.01	
Dibromofluoromethane (surrogate)		109%	•
1,2-Dichloroethane-d4 (surrogate)	42.6	85%	
Toluene-d8 (surrogate)	50 50.7	100%	
4-bromofluorobenzene (surrogate)		113%	D 10 100
Analysis Date/Time:	11/01/07/11:54	a Our Bassian	Page 10 of 63
Analyst Initials	trour Protect	s. Our Passion.	•

tyour Projects. Our Passion.

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8015M TPH-Ext C8-C36

Prep Method:

3520C

Analytical Batch:

110107E

Client Sample ID:

MW-2

Sample Collection Date/Time:

10/29/07 16:10

7-14696

Sample Received Date/Time:

10/30/07 9:50

Envision Sample Number: Sample Matrix:

water

Flags

Compounds

Sample Results (mg/L)

Reporting Limit (mg/L) 0.1

TPH--Extended C8-C36

o-Terphenyl (surrogate)

< 0.1

57%

Analysis Date/Time:

Analyst Initials:

Date Extracted:

Initial Sample Volume:

Final Volume:

11/1/2007 22:27

gjd

10/31/2007

930 mL

1.0 mL

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8015 GRO

Prep Method:

5030

Analytical Batch:

103107GW

Client Sample ID:

MW-2

Sample Collection Date/Time:

10/29/07 16:10

Envision Sample Number:

7-14696

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

Reporting Limit (mg/L)

Flags

Compounds TPH-Gasoline

Sample Results (mg/L)

< 0.22

0.22

4-bromofluorobenzene (surrogate)

Analysis Date/Time:

105%

10/31/07/19:58

Analyst Initials

tjg

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8270 BNA/PAH-SIM

Prep Method:

3520C

Analytical Batch:

110107B

Client Sample ID:

MW-2

Sample Collection Date/Time:

10/29/07 16:10

Envision Sample Number:

7-14696

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

Compounds	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Aniline	< 0.01	0.01	
Benzoic Acid	< 0.05	0.05	
Benzyl Alcohol	< 0.02	0.02	
4-Bromophenylphenyl ether	< 0.01	0.01	
Butylbenzylphthalate	< 0.01	0.01	
Carbazole	< 0.02	0.02	
4-Chloro-3-methylphenol	< 0.02	0.02	
4-Chloroaniline	< 0.02	0.02	
bis(2-Chloroethoxy)methane	< 0.01	0.01	
bis(2-Chloroethyl)ether	< 0.01	0.01	
bis(2-Chloroisopropyl)ether	< 0.01	0.01	
2-Chloronaphthalene	< 0.01	0.01	
2-Chlorophenol	< 0.01	0.01	
4-Chlorophenylphenyl ether	< 0.01	0.01	
Dibenzofuran	< 0.01	0.01	
1,2-Dichlorobenzene	< 0.01	0.01	
1,3-Dichlorobenzene	< 0.01	0.01	
1,4-Dichlorobenzene	< 0.01	0.01	
3,3-Dichlorobenzidine	< 0.02	0.02	
2,4-Dichlorophenol	< 0.01	0.01	•
Diethylphthalate	< 0.01	0.01	
2,4-Dimethylphenol	< 0.01	0.01	
Dimethylphthalate	< 0.01	0.01	
Di-n-butylphthalate	< 0.01	0.01	
4,6-Dinitro-2-methylphenol	< 0.05	0.05	
2,4-Dinitrophenol	< 0.05	0.05	
2,4-Dinitrotoluene	< 0.01	0.01	
2,6-Dinitrotoluene	< 0.01	0.01	
Di-n-octylphthalate	< 0.01	0.01	
bis(2-Ethylhexyl)phthalate	< 0.005	0.005	
Hexachloro-1,3-butadiene	< 0.01	0.01	
Hexachlorobenzene	< 0.005	0.005	
Hexachlorocyclopentadiene	< 0.025	0.025	
Hexachloroethane	< 0.01	0.01	Pa

Your Projects. Our Passion.

Page 13 of 63

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

<u>Flags</u>

8270 Contin	ued
-------------	-----

0270 Gontinueu		
<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/L)
Isophorone	< 0.01	0.01
2-Methylphenol (o-Cresol)	< 0.01	0.01
3&4-Methylphenol	< 0.02	0.02
2-Nitroaniline	< 0.05	0.05
3-Nitroaniline	< 0.05	0.05
4-Nitroaniline	< 0.05	0.05
Nitrobenzene	< 0.01	0.01
2-Nitrophenol	< 0.01	0.01
4-Nitrophenol	< 0.05	. 0.05
N-Nitroso-di-n-propylamine	< 0.01	.0.01
N-Nitrosodiphenylamine	< 0.01	0.01
Pentachlorophenol	< 0.05	0.05
Phenol	< 0.01	0.01
1,2,4-Trichlorobenzene	< 0.01	0.01
2,4,5-Trichlorophenol	< 0.01	0.01
2,4,6-Trichlorophenol	< 0.01	0.01
2-Fluorophenol (surrogate)	14%	
Phenol-d6 (surrogate)	63%	
Nitrobenzene-d5 (surrogate)	74%	
2-Fluorobiphenyl (surrogate)	92%	
2,4,6-Tribromophenol (surrogate) 12%	
p-Terphenyl-d14 (surrogate)	86%	
Analysis Date/Time:	11-01-07/18:11	•
Analyst Initials:	bds	
Date Extracted:	10/30/2007	
Initial Sample Volume:	970 mL	
Final Volume:	1.0 mL	

PAH-SIM Analytical Batch:

110107P

<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Acenaphthene	< 0.001	0.001	
Acenaphthylene	< 0.001	0.001	
Anthracene	< 0.0001	0.0001	
Benzo(a)anthracene	< 0.0001	0.0001	
Benzo(a)pyrene	< 0.0001	0.0001	
Benzo(b)fluoranthene	< 0.0001	0.0001	
Benzo(g,h,i)perylene	< 0.0001	0.0001	
Benzo(k)fluoranthene	< 0.0001	0.0001	
Chrysene	< 0.0001	0.0001	•
Dibenzo(a,h)anthracene	< 0.0001	0.0001	
Fluoranthene	< 0.001	0.001	
Fluorene	< 0.001	0.001	
Indeno(1,2,3-cd)pyrene	< 0.000022	0.000022	
2-methylnaphthalene	< 0.001	0.001	
Naphthalene	< 0.001.	0.001	
Phenanthrene	< 0.001	0.001	
Pyrene ·	< 0.001	0.001	
Analysis Date/Time:	11-01-07/18:48		
Analyst Initials:	bds		Pa
			i a

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351,8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

103107icp

ENVision Project Number:

2007-2225

Analytical Method:

6010/7470

Prep Method:

3010A

Client Sample ID:

MW-2

7-14696

Sample Collection Date/Time: Sample Received Date/Time:

10/29/07

16:10

Envision Sample Number: Sample Matrix:

water

Analytical Batch:

10/30/07

103007hgw

9:50

Analytical Batch:

Compounds	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
Arsenic	< 0.01	0.01	
Cadmium	< 0.005	0.005	,
Chromium	< 0.01	0.01	
Lead	< 0.01	0.01	
Mercury	< 0.002	0.002	
Nickel	< 0.05	0.05	
Zinc	< 0.05	0.05	
ICP Analysis Date/Time: Analyst Initials: Date Digested: Initial Sample Volume:	10/31/2007 12:12 gjd 10/30/2007 50 ml	Hg Analysis Date/Time: Hg Analyst Initials: Date Digested: Initial Sample Volume:	10/30/2007 13:44 gjd 10/30/2007 50 mL
Final Volume:	50 ml	Final Volume:	50 mL

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8260 5030B

Prep Method: Analytical Batch:

110107VW

Client Sample ID:

MW-3

Sample Collection Date/Time: 10/29/07 11:05

Envision Sample Number:

7-14697

Sample Received Date/Time: 10/30/07 9:50

Sample Matrix:

water

<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
Acetone	< 0.1	0.1	,
Acrolein	< 0.1	0.1	
Acrylonitrile	< 0.1	0.1	
Benzene	< 0.005	0.005	
Bromobenzene	< 0.005	0.005	
Bromochloromethane	< 0.005	0.005	•
Bromodichloromethane	< 0.005	0.005	
Bromoform	< 0.005	0.005	
Bromomethane	< 0.005	0.005	
n-Butanol	< 0.050	0.05	
2-Butanone (MEK)	< 0.01	0.01	
n-Butylbenzene	< 0.005	0.005	
sec-Butylbenzene	< 0.005	0.005	
tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride	< 0.005	0.005	
Chlorobenzene	< 0.005	0.005	•
Chloroethane	< 0.005	0.005	•
2-Chloroethylvinylether	< 0.050	0.05	
Chloroform	< 0.005	0.005	
Chloromethane	< 0.005	0.005	
2-Chlorotoluene	< 0.005	0.005	
4-Chlorotoluene	< 0.005	0.005	
1,2-Dibromo-3-chloropropane	< 0.005	0.005	
Dibromochloromethane	< 0.005	0.005	
1,2-Dibromoethane (EDB)	< 0.005	0.005	•
Dibromomethane	< 0.005	0.005	. *
1,2-Dichlorobenzene	< 0.005	0.005	
1,3-Dichlorobenzene	< 0.005	0.005	
1,4-Dichlorobenzene	< 0.005	0.005	
trans-1,4-Dichloro-2-butene	< 0.1	0.1	
Dichlorodifluoromethane	< 0.005	0.005	

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8260 continued	Causala Daguita (maril)	Deposition Limit (mar/l)	Elege
<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	
1,1-Dichloroethene	< 0.005	0.005	·
cis-1,2-Dichloroethene	< 0.005	0.005	
trans-1,2-Dichloroethene	< 0.005	0.005	
1,2-Dichloropropane	< 0.005	0.005	
1,3-Dichloropropane	< 0.005	0.005	
2,2-Dichloropropane	< 0.005	0.005	
1,1-Dichloropropene	< 0.005	0.005	
cis-1,3-Dichloropropene	< 0.005	0.005	,
trans-1,3-Dichloropropene	< 0.005	0.005	
Ethylbenzene	< 0.005	0.005	
Ethyl methacrylate	< 0.1	0.1	
Hexachloro-1,3-butadiene	< 0.005	0.005	
n-Hexane	< 0.01	0.01	•
2-Hexanone	< 0.01	0.01	
lodomethane	< 0.01	0.01	
Isopropylbenzene (Cumene)	< 0.005	0.005	
p-Isopropyltoluene	< 0.005	0.005	
Methylene chloride	< 0.005	0.005	
4-Methyl-2-pentanone (MIBK)	< 0.01	0.01	
Methyl-tert-butyl-ether	< 0.005	0.005	•
Naphthalene	< 0.005	0.005	
n-Propylbenzene	< 0.005	0.005	·
Styrene	< 0.005	0.005	
1,1,1,2-Tetrachloroethane	< 0.005	0.005	
1,1,2,2-Tetrachloroethane	< 0.005	0.005	
Tetrachloroethene	< 0.005	0.005	
Toluene	< 0.005	0.005	
1,2,3-Trichlorobenzene	< 0.005	0.005	
1,2,4-Trichlorobenzene	< 0.005	0.005	
1,1,1-Trichloroethane	< 0.005	0.005	
1,1,2-Trichloroethane	< 0.005	0.005	
Trichloroethene	< 0.005	0.005	
Trichlorofluoromethane	< 0.005	0.005	
1,2,3-Trichloropropane	< 0.005	0.005	•
1,2,4-Trimethylbenzene	< 0.005	0.005	
1,3,5-Trimethylbenzene	< 0.005	0.005	
Vinyl acetate	< 0.01	0.01	
Vinyl chloride	< 0.002	0.002	
Xylene, M&P	< 0.005	0.005	
Xylene, Ortho	< 0.005	0.005	
Xylene (Total)	< 0.01	0.01	
Dibromofluoromethane (surrogate)	54.2	108%	
1,2-Dichloroethane-d4 (surrogate)	48.4	97%	
Toluene-d8 (surrogate)	49.8	100%	
4-bromofluorobenzene (surrogate)	60.3	121%	
Analysis Date/Time:	11/01/07/12:13	,	Page 17 of 63
Analyst Initials		s. Our Passion.	1 490 17 01 00

gour Projects. Our Passion.

Analyst Initials

1439 Sadlier Circle West Drive Indianapolis, IN 46239

Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8015M TPH-Ext C8-C36

Prep Method:

3520C

Analytical Batch:

110107E

Client Sample ID:

MW-3

Sample Collection Date/Time:

10/29/07 11:05

Envision Sample Number:

7-14697

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

Compounds

Sample Results (mg/L)

Reporting Limit (mg/L)

Flags

TPH--Extended C8-C36

< 0.1

0.1

o-Terphenyl (surrogate)

Analysis Date/Time:

Analyst Initials:

Date Extracted:

Initial Sample Volume:

Final Volume:

80%

11/1/2007 22:57

gjd

10/31/2007

980 mL

1.0 mL

Page 18 of 63

Your Projects. Our Passion.

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8015 GRO 5030

Prep Method: Analytical Batch:

103107GW

Client Sample ID:

MW-3

Sample Collection Date/Time:

10/29/07 11:05

Envision Sample Number:

7-14697

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

Compounds

Sample Results (mg/L)

Reporting Limit (mg/L)

Flags

TPH-Gasoline

< 0.22

0.22

4-bromofluorobenzene (surrogate)

Analysis Date/Time:

111% 10/31/07/20:18

Analyst Initials

tjg

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8270 BNA/PAH-SIM

Prep Method:

3520C

Analytical Batch:

110107B

Client Sample ID:

MW-3

Sample Collection Date/Time:

10/29/07 11:05

Envision Sample Number:

7-14697

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Aniline	< 0.01	0.01	
Benzoic Acid	< 0.05	0.05	
Benzyl Alcohol	< 0.02	0.02	
4-Bromophenylphenyl ether	< 0.01	0.01	
Butylbenzylphthalate	< 0.01	0.01	
Carbazole	< 0.02	0.02	
4-Chloro-3-methylphenol	< 0.02	0.02	
4-Chloroaniline	< 0.02	0.02	
bis(2-Chloroethoxy)methane	< 0.01	0.01	
bis(2-Chloroethyl)ether	< 0.01	0.01	
bis(2-Chloroisopropyl)ether	< 0.01	0.01	
2-Chloronaphthalene	< 0.01	0.01	
2-Chlorophenol	< 0.01	0.01	
4-Chlorophenylphenyl ether	< 0.01	0.01	
Dibenzofuran	< 0.01	0.01	
1,2-Dichlorobenzene	< 0.01	0.01	
1,3-Dichlorobenzene	< 0.01	0.01	
1,4-Dichlorobenzene	< 0.01	0.01	
3,3-Dichlorobenzidine	< 0.02	0.02	
2,4-Dichlorophenol	< 0.01	0.01	
Diethylphthalate	< 0.01	0.01	
2,4-Dimethylphenol	< 0.01	0.01	
Dimethylphthalate	< 0.01	0.01	
Di-n-butylphthalate	< 0.01	0.01	
4,6-Dinitro-2-methylphenol	< 0.05	0.05	
2,4-Dinitrophenol	< 0.05	0.05	
2,4-Dinitrotoluene	< 0.01	0.01	
2,6-Dinitrotoluene	< 0.01	0.01	
Di-n-octylphthalate	< 0.01	0.01	
bis(2-Ethylhexyl)phthalate	< 0.005	0.005	
Hexachloro-1,3-butadiene	< 0.01	0.01	•
Hexachlorobenzene	< 0.005	0.005	
Hexachlorocyclopentadiene	< 0.025	0.025	
Hexachloroethane	< 0.01	0.01	Pag

Your Projects. Our Passion.

Page 20 of 63

8270 Continued...

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Compounds	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Isophorone	< 0.01	0.01	
2-Methylphenol (o-Cresol)	< 0.01	0.01	
3&4-Methylphenol	< 0.02	0.02	
2-Nitroaniline	< 0.05	0.05	
3-Nitroaniline	< 0.05	0.05	
4-Nitroaniline	< 0.05	0.05	
Nitrobenzene	< 0.01	0.01	

< 0.01 0.01 2-Nitrophenol 0.05 < 0.05 4-Nitrophenol N-Nitroso-di-n-propylamine < 0.01 0.01 0.01 N-Nitrosodiphenylamine < 0.01 Pentachlorophenol < 0.05 0.05 < 0.01 0.01 Phenol 0.01 < 0.01 1,2,4-Trichlorobenzene 0.01 2,4,5-Trichlorophenol < 0.01 0.01

2,4,6-Trichlorophenol < 0.01 2-Fluorophenol (surrogate) 70% Phenol-d6 (surrogate) 92% Nitrobenzene-d5 (surrogate) 86% 2-Fluorobiphenyl (surrogate) 100% 2,4,6-Tribromophenol (surrogate) 86% p-Terphenyl-d14 (surrogate) 112% Analysis Date/Time: 11-01-07/18:44

Analysis Date/Time: 11-01-07/18:4
Analyst Initials: bds
Date Extracted: 10/30/2007
Initial Sample Volume: 1000 mL
Final Volume: 1.0 mL

PAH-SIM Analytical Batch: 110107P

Compounds	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Acenaphthene	< 0.001	0.001	
Acenaphthylene	< 0.001	0.001	
Anthracene	< 0.0001	0.0001	
Benzo(a)anthracene	< 0.0001	0.0001	
Benzo(a)pyrene	< 0.0001	0.0001	
Benzo(b)fluoranthene	< 0.0001	0.0001	
Benzo(g,h,i)perylene	< 0.0001	0.0001	
Benzo(k)fluoranthene	< 0.0001	0.0001	
Chrysene	< 0.0001	0.0001	
Dibenzo(a,h)anthracene	< 0.0001	0.0001	
Fluoranthene	< 0.001	0.001	
Fluorene	< 0.001	0.001	
Indeno(1,2,3-cd)pyrene	< 0.000022	0.000022	
2-methylnaphthalene	< 0.001	0.001	
Naphthalene	< 0.001	0.001	•
Phenanthrene	< 0.001	0.001	
Pyrene	< 0.001	0.001	
Analysis Date/Time:	11-01-07/19:16		
Analyst Initials:	bds		Do
•		.	Pag

Your Projects. Our Passion.

Page 21 of 63

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

103107icp

ENVision Project Number:

2007-2225

Analytical Method:

6010/7470

Prep Method:

3010A

Client Sample ID:

MW-3

Envision Sample Number:

Sample Collection Date/Time:

Analytical Batch:

10/29/07

11:05

7-14697

Sample Received Date/Time:

10/30/07

103007hgw

9:50

Sample Matrix:

Analytical Batch:

water

<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
Arsenic	< 0.01	0.01	
Cadmium	< 0.005	0.005	
Chromium	< 0.01	0.01	
Lead	< 0.01	0.01)
Mercury	< 0.002	0.002	
Nickel	< 0.05	0.05	
Zinc	< 0.05	0.05	
ICP Analysis Date/Time: Analyst Initials:	10/31/2007 12:24 gjd	Hg Analysis Date/Time: Hg Analyst Initials:	10/30/2007 13:46 gjd
Date Digested:	10/30/2007	Date Digested:	10/30/2007
Initial Sample Volume:	50 ml	Initial Sample Volume:	50 mL
Final Volume:	50 ml	Final Volume:	50 mL

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8260

Prep Method:

5030B

Analytical Batch:

110107VW

Client Sample ID:

1,3-Dichlorobenzene

1,4-Dichlorobenzene

trans-1,4-Dichloro-2-butene

Dichlorodifluoromethane

MW-4

Sample Collection Date/Time: 10/29/07 13:30

Envision Sample Number:

7-14698

Sample Received Date/Time: 10/30/07 9:50

Sample Matrix:	water	ſ	
<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
Acetone	< 0.1	0.1	
Acrolein	< 0.1	0.1	
Acrylonitrile	< 0.1.	0.1	
Benzene	< 0.005	0.005	
Bromobenzene	< 0.005	0.005	
Bromochloromethane	< 0.005	0.005	
Bromodichloromethane	< 0.005	0.005	•
Bromoform	< 0.005	0.005	
Bromomethane	< 0.005	0.005	
n-Butanol	< 0.050	0.05	
2-Butanone (MEK)	< 0.01	0.01	
n-Butylbenzene	< 0.005	0.005	•
sec-Butylbenzene	< 0.005	. 0.005	
tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride	< 0.005	0.005	
Chlorobenzene	< 0.005	0.005	
Chloroethane	< 0.005	0.005	
2-Chloroethylvinylether	< 0.050	0.05	
Chloroform	< 0.005	0.005	
Chloromethane	< 0.005	0.005	
2-Chlorotoluene	< 0.005	0.005	
4-Chlorotoluene	< 0.005	0.005	
1,2-Dibromo-3-chloropropane	< 0.005	0.005	
Dibromochloromethane	< 0.005	0.005	•
1,2-Dibromoethane (EDB)	< 0.005	0.005	
Dibromomethane	< 0.005	0.005	
1,2-Dichlorobenzene	< 0.005	0.005	

< 0.005

< 0.005

< 0.1

< 0.005

0.005

0.005

0.1 0.005

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8260 continued			
Compounds	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	·
1,1-Dichloroethene	< 0.005	0.005	
cis-1,2-Dichloroethene	< 0.005	0.005	
trans-1,2-Dichloroethene	< 0.005	0.005	
1,2-Dichloropropane	< 0.005	0.005	
1,3-Dichloropropane	< 0.005	0.005	
2,2-Dichloropropane	< 0.005	0.005	•
1,1-Dichloropropene	< 0.005	0.005	
cis-1,3-Dichloropropene	< 0.005	0.005	
trans-1,3-Dichloropropene	< 0.005	0.005	
Ethylbenzene	< 0.005	0.005	
Ethyl methacrylate	< 0.1	0.1	
Hexachloro-1,3-butadiene	< 0.005	0.005	
n-Hexane	< 0.01	0.01	
2-Hexanone	< 0.01	0.01	
Iodomethane	< 0.01	0.01	
Isopropylbenzene (Cumene)	< 0.005	0.005	•
p-Isopropyltoluene	< 0.005	0.005	
Methylene chloride	< 0.005	0.005	
4-Methyl-2-pentanone (MIBK)	< 0.01	0.01	
Methyl-tert-butyl-ether	0.063	0.005	
Naphthalene	< 0.005	0.005	
n-Propylbenzene	< 0.005	0.005	•
Styrene	< 0.005	0.005	•
1,1,1,2-Tetrachloroethane	< 0.005	0.005	•
1,1,2-Tetrachloroethane	< 0.005	0.005	•
Tetrachloroethene	< 0.005	0.005	
Toluene	< 0.005	0.005	
1,2,3-Trichlorobenzene	< 0.005	0.005	
1,2,4-Trichlorobenzene	< 0.005	0.005	
1,1,1-Trichloroethane	< 0.005	0.005	
1,1,2-Trichloroethane	< 0.005	0.005	
Trichloroethene	< 0.005	0.005	
Trichlorofluoromethane	< 0.005	0.005	
1,2,3-Trichloropropane	< 0.005	0.005	•
1,2,4-Trimethylbenzene	< 0.005	0.005	
1,3,5-Trimethylbenzene	< 0.005	0.005	
Vinyl acetate	< 0.003	0.01	,
Vinyl acetate Vinyl chloride	< 0.002	0.002	·
Xylene, M&P	< 0.002	0.002	
Xylene, Ortho	< 0.005	0.005	
Xylene (Total)	< 0.01	0.01	
• •	54.3	109%	
Dibromofluoromethane (surrogate)	46.4	93%	·
1,2-Dichloroethane-d4 (surrogate)	40.4 49.5	99%	
Toluene-d8 (surrogate)	49.5 54	108%	
4-bromofluorobenzene (surrogate)	11/01/07/12:32	10070	Page 24 of 62
Analysis Date/Time:		s. Our Passion.	Page 24 of 63
Analyst Initials	ijgbar Froject	o. Ou. 1 4551011.	

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8015M TPH-Ext C8-C36

Prep Method:

3520C

Analytical Batch:

110107E

Client Sample ID:

MW-4

Sample Collection Date/Time:

10/29/07 13:30

Envision Sample Number:

Compounds

7-14698

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

Sample Results (mg/L)

Reporting Limit (mg/L)

Flags

TPH--Extended C8-C36

1.20

0.1

o-Terphenyl (surrogate)

Analysis Date/Time:

Analyst Initials:

Date Extracted:

Initial Sample Volume: Final Volume:

98%

11/1/2007 23:26

gjd

10/31/2007

980 mL

1.0 mL

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8015 GRO 5030

Prep Method: Analytical Batch:

103107GW

Client Sample ID:

MW-4

Sample Collection Date/Time:

10/29/07 13:30

Envision Sample Number:

7-14698

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

Sample Results (mg/L) Re

Reporting Limit (mg/L)

Flags

TPH-Gasoline

< 0.22

0.22

4-bromofluorobenzene (surrogate)

Compounds

Analysis Date/Time:

106%

ime:

10/31/07/20:37

Analyst Initials

tjg

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239

Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8270 BNA/PAH-SIM

Prep Method:

3520C

Analytical Batch:

110107B

Client Sample ID:

MW-4

Sample Collection Date/Time:

10/29/07 13:30

Envision Sample Number:

7-14698

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

// Penerting Limit (mg/l) Flags

Compounds	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Aniline	< 0.01	0.01	
Benzoic Acid	< 0.05	0.05	
Benzyl Alcohol	< 0.02	0.02	
4-Bromophenylphenyl ether	< 0.01	0.01	
Butylbenzylphthalate	< 0.01	0.01	
Carbazole	< 0.02	0.02	
4-Chloro-3-methylphenol	< 0.02	0.02	
4-Chloroaniline	< 0.02	0.02	
bis(2-Chloroethoxy)methane	< 0.01	0.01	
bis(2-Chloroethyl)ether	. < 0.01	0.01	
bis(2-Chloroisopropyl)ether	< 0.01	0.01	
2-Chloronaphthalene	< 0.01	. 0.01	•
2-Chlorophenol	< 0.01	0.01	
4-Chlorophenylphenyl ether	< 0.01	0.01	
Dibenzofuran	< 0.01	0.01	
1,2-Dichlorobenzene	< 0.01	0.01	
1,3-Dichlorobenzene	< 0.01	0.01	
1,4-Dichlorobenzene	< 0.01	0.01	
3,3-Dichlorobenzidine	< 0.02	0.02	
2,4-Dichlorophenol	< 0.01	0.01	
Diethylphthalate	< 0.01	0.01	
2,4-Dimethylphenol	< 0.01	0.01	
Dimethylphthalate	< 0.01	0.01	
Di-n-butylphthalate	< 0.01	0.01	
4,6-Dinitro-2-methylphenol	< 0.05	0.05	
2,4-Dinitrophenol	< 0.05	0.05	
2,4-Dinitrotoluene	< 0.01	0.01	
2,6-Dinitrotoluene	< 0.01	0.01	
Di-n-octylphthalate	< 0.01	0.01	
bis(2-Ethylhexyl)phthalate	< 0.005	0.005	
Hexachloro-1,3-butadiene	< 0.01	0.01	
Hexachlorobenzene	< 0.005	0.005	
Hexachlorocyclopentadiene	< 0.025	0.025	
Hexachloroethane	< 0.01	0.01	Page 27
	Vour Proje	cts Our Passion	9

Your Projects. Our Passion.

Page 27 of 63

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8270 Continued...

Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
< 0.01	0.01	
< 0.01	0.01	
< 0.02	0.02	
< 0.05	0.05	
< 0.05	0.05	
< 0.05	0.05	
< 0.01	0.01	
< 0.01	0.01	
< 0.05	0.05	
< 0.01	0.01	
< 0.01	0.01	
< 0.05	0.05	
< 0.01	0.01	
< 0.01	0.01	
< 0.01	0.01	
< 0.01	0.01	
54%		
77%		
88%		
92%		
) 87%		•
98%		
11-01-07/19:16		
bds		••
10/30/2007		
1000 mL		
1.0 mL		
	< 0.01 < 0.02 < 0.05 < 0.05 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 1.001 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <	 < 0.01 < 0.02 < 0.05 < 0.05 < 0.05 < 0.05 < 0.01 < 0.0

PAH-SIM Analytical Batch:

110107P

Compounds	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Acenaphthene	< 0.001	0.001	٠
Acenaphthylene	< 0.001	0.001	
Anthracene	< 0.0001	0.0001	
Benzo(a)anthracene	< 0.0001	0.0001	
Benzo(a)pyrene	< 0.0001	0.0001	
Benzo(b)fluoranthene	< 0.0001	0.0001	
Benzo(g,h,i)perylene	< 0.0001	0.0001	
Benzo(k)fluoranthene	< 0.0001	0.0001	•
Chrysene	< 0.0001	0.0001	
Dibenzo(a,h)anthracene	< 0.0001	0.0001	
Fluoranthene	-< 0.001	0.001	
Fluorene	< 0.001	0.001	
Indeno(1,2,3-cd)pyrene	< 0.000022	0.000022	
2-methylnaphthalene	< 0.001	0.001	
Naphthalene	< 0.001	0.001	
Phenanthrene	< 0.001	0.001	
Pyrene	< 0.001	0.001	•
Analysis Date/Time:	11-01-07/19:44		•
Analyst Initials:	bds		Do
	Vous Brois	eta Over Dossion	Pa

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

103107icp

ENVision Project Number:

2007-2225

Analytical Method:

6010/7470

Prep Method:

3010A

Client Sample ID:

MW-4

Envision Sample Number:

7-14698

Sample Collection Date/Time: Sample Received Date/Time:

10/29/07

13:30

Sample Matrix:

Analytical Batch:

water

10/30/07

103007hgw

9:50

Compounds	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
Arsenic	< 0.01	0.01	
Cadmium	< 0.005	0.005	
Chromium	< 0.01	0.01	
Lead	< 0.01	0.01	
Mercury	< 0.002	0.002	
Nickel	< 0.05	0.05	
Zinc	< 0.05	0.05	
ICP Analysis Date/Time: Analyst Initials: Date Digested: Initial Sample Volume: Final Volume:	10/31/2007 12:28 gjd 10/30/2007 50 ml 50 ml	Hg Analysis Date/Time: Hg Analyst Initials: Date Digested: Initial Sample Volume: Final Volume:	10/30/2007 13:48 gjd 10/30/2007 50 mL 50 mL

Analytical Batch:

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8260

Prep Method:

5030B

Analytical Batch:

110107VW

Client Sample ID:

MW-5

Sample Collection Date/Time: 10/29/07 14:44

Envision Sample Number:

7-14699

Sample Received Date/Time: 10/30/07 9:50

Sample Matrix:

water

Compounds	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
Acetone	< 0.1	0.1	
Acrolein	< 0.1	0.1	
Acrylonitrile	< 0.1	0.1	
Benzene	< 0.005	0.005	
Bromobenzene	< 0.005	0.005	
Bromochloromethane	< 0.005	0.005	
Bromodichloromethane	< 0.005	0.005	
Bromoform	< 0.005	0.005	
Bromomethane	< 0.005	0.005	
n-Butanol	< 0.050	0.05	
2-Butanone (MEK)	< 0.01	0.01	
n-Butylbenzene	< 0.005	0.005	
sec-Butylbenzene	< 0.005	0.005	
tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride	< 0.005	0.005	•
Chlorobenzene	< 0.005	0.005	
Chloroethane	< 0.005	0.005	
2-Chloroethylvinylether	< 0.050	0.05	
Chloroform	< 0.005	0.005	•
Chloromethane	< 0.005	0.005	
2-Chlorotoluene	< 0.005	0.005	
4-Chlorotoluene	< 0.005	0.005	
1,2-Dibromo-3-chloropropane	< 0.005	0.005	
Dibromochloromethane	< 0.005	0.005	
1,2-Dibromoethane (EDB)	< 0.005	0.005	
Dibromomethane	< 0.005	0.005	
1,2-Dichlorobenzene	< 0.005	0.005	
1,3-Dichlorobenzene	< 0.005	0.005	
1,4-Dichlorobenzene	< 0.005	0.005	
trans-1,4-Dichloro-2-butene	< 0.1	0.1	
Dichlorodifluoromethane	< 0.005	0.005	

ENVision Laboratories, Inc.

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

8260 continued	•		
Compounds	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	
1,1-Dichloroethene	< 0.005	0.005	
cis-1,2-Dichloroethene	< 0.005	0.005	
trans-1,2-Dichloroethene	< 0.005	0.005	
1,2-Dichloropropane	< 0.005	0.005	
1,3-Dichloropropane	< 0.005	0.005	
2,2-Dichloropropane	< 0.005	0.005	
1,1-Dichloropropene	< 0.005	0.005	
cis-1,3-Dichloropropene	< 0.005	0.005	
	< 0.005	0.005	
trans-1,3-Dichloropropene	< 0.005	0.005	
Ethylbenzene	< 0.1	0.003	
Ethyl methacrylate	< 0.005	0.005	
Hexachloro-1,3-butadiene		0.003	
n-Hexane	< 0.01	· ·	
2-Hexanone	< 0.01	0.01	
lodomethane	< 0.01	0.01	
Isopropylbenzene (Cumene)	< 0.005	0.005	
p-Isopropyltoluene	< 0.005	0.005	
Methylene chloride	< 0.005	0.005	
4-Methyl-2-pentanone (MIBK)	< 0.01	0.01	
Methyl-tert-butyl-ether	< 0.005	0.005	
Naphthalene	< 0.005	0.005	
n-Propylbenzene	< 0.005	0.005	
Styrene	< 0.005	0.005	
1,1,1,2-Tetrachloroethane	< 0.005	0.005	
1,1,2,2-Tetrachloroethane	< 0.005	0.005	
Tetrachloroethene	< 0.005	0.005	
Toluene	< 0.005	0.005	
1,2,3-Trichlorobenzene	< 0.005	0.005	
1,2,4-Trichlorobenzene	< 0.005	0.005	
1,1,1-Trichloroethane	< 0.005	0.005	
1,1,2-Trichloroethane	< 0.005	0.005	
Trichloroethene	< 0.005	0.005	
Trichlorofluoromethane	< 0.005	0.005	
1,2,3-Trichloropropane	< 0.005	0.005	
1,2,4-Trimethylbenzene	< 0.005	0.005	
1,3,5-Trimethylbenzene	< 0.005	0.005	,
Vinyl acetate	< 0.01	0.01	
Vinyl chloride	< 0.002	0.002	
Xylene, M&P	< 0.005	0.005	
Xylene, 0rtho	< 0.005	0.005	
Xylene (Total)	< 0.01	0.01	
Dibromofluoromethane (surrogate)		111%	
1,2-Dichloroethane-d4 (surrogate)	49.4	99%	
Toluene-d8 (surrogate)	50.3	101%	
	50.3 57.2	114%	·
4-bromofluorobenzene (surrogate)		114/0	Daga 24 of 62
Analysis Date/Time:	11/01/07/12:51	s. Our Passion.	Page 31 of 63
Analyst Initials	igour Project	s. Vui rassivii.	

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8015M TPH-Ext C8-C36

Prep Method:

3520C

Analytical Batch:

110107E

Client Sample ID:

MW-5

Sample Collection Date/Time:

10/29/07 14:44

Sample Received Date/Time:

10/30/07 9:50

Envision Sample Number: Sample Matrix:

7-14699 water

Flags

Compounds TPH--Extended C8-C36 Sample Results (mg/L)

Reporting Limit (mg/L) 0.32

0.1

o-Terphenyl (surrogate)

Analysis Date/Time:

Analyst Initials:

Date Extracted:

Initial Sample Volume:

Final Volume:

74%

11/1/2007 23:55

gjd

10/31/2007

930 mL

1.0 mL

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

Prep Method:

8015 GRO 5030

Analytical Batch:

103107GW

Client Sample ID:

MW-5

Sample Collection Date/Time:

10/29/07 14:44

Envision Sample Number:

7-14699

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

Reporting Limit (mg/L)

TPH-Gasoline

Sample Results (mg/L) < 0.22

0.22

<u>Flags</u>

4-bromofluorobenzene (surrogate)

Compounds

Analysis Date/Time:

106% 10/31/07/20:56

Analyst Initials

tjg

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239

Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8270 BNA/PAH-SIM

Prep Method:

3520C

Analytical Batch:

110107B

Client Sample ID:

MW-5

Sample Collection Date/Time:

10/29/07 14:44

Envision Sample Number:

7-14699

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

Compounds	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Aniline	< 0.011	0.011	
Benzoic Acid	< 0.057	0.057	
Benzyl Alcohol	< 0.023	0.023	
4-Bromophenylphenyl ether	< 0.011	0.011	
Butylbenzylphthalate	< 0.011	0.011	
Carbazole	< 0.023	0.023	
4-Chloro-3-methylphenol	< 0.023	0.023	
4-Chloroaniline	< 0.023	0.023	
bis(2-Chloroethoxy)methane	< 0.011	0.011	
bis(2-Chloroethyl)ether	< 0.011	0.011	•
bis(2-Chloroisopropyl)ether	< 0.011	0.011	
2-Chloronaphthalene	< 0.011	0.011	
2-Chlorophenol	< 0.011	0.011	
4-Chlorophenylphenyl ether	< 0.011	0.011	
Dibenzofuran	< 0.011	0.011	
1,2-Dichlorobenzene	< 0.011	0.011	
1,3-Dichlorobenzene	< 0.011	0.011	
1,4-Dichlorobenzene	< 0.011	0.011	
3,3-Dichlorobenzidine	< 0.023	0.023	
2,4-Dichlorophenol	< 0.011	0.011	
Diethylphthalate	< 0.011	0.011	
2,4-Dimethylphenol	< 0.011	0.011	
Dimethylphthalate	< 0.011	0.011	
Di-n-butylphthalate	< 0.011	0.011	
4,6-Dinitro-2-methylphenol	< 0.057	0.057	
2,4-Dinitrophenol	< 0.057	0.057	
2,4-Dinitrotoluene	< 0.011	0.011	
2,6-Dinitrotoluene	< 0.011	0.011	
Di-n-octylphthalate	< 0.011	0.011	
bis(2-Ethylhexyl)phthalate	< 0.0057	0.0057	
Hexachloro-1,3-butadiene	< 0.011	0.011	
Hexachlorobenzene	< 0.0057	0.0057	
Hexachlorocyclopentadiene	< 0.028	0.028	
Hexachloroethane	< 0.011	0.011	Page

Your Projects. Our Passion.

Page 34 of 63

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

<u>Flags</u>

8270 Cor	ntinued	I
----------	---------	---

ozio Comunaea			_
<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>]</u>
Isophorone	< 0.011	0.011	
2-Methylphenol (o-Cresol)	< 0.011	0.011	
3&4-Methylphenol	< 0.023	0.023	
2-Nitroaniline	< 0.057	0.057	
3-Nitroaniline	< 0.057	0.057	
4-Nitroaniline	< 0.057	0.057	
Nitrobenzene	< 0.011	0.011	
2-Nitrophenol	< 0.011	0.011	
4-Nitrophenol	< 0.057	0.057	
N-Nitroso-di-n-propylamine	< 0.011	0.011	
N-Nitrosodiphenylamine	< 0.011 ,	0.011	
Pentachlorophenol	< 0.057	0.057	
Phenol	. < 0.011	0.011	
1,2,4-Trichlorobenzene	< 0.011	0.011	
2,4,5-Trichlorophenol	< 0.011	0.011	
2,4,6-Trichlorophenol	< 0.011	0.011	
2-Fluorophenol (surrogate)	. 17%		
Phenol-d6 (surrogate)	68%		
Nitrobenzene-d5 (surrogate)	81%		
2-Fluorobiphenyl (surrogate)	100%		
2,4,6-Tribromophenol (surrogat	e) 17%		
p-Terphenyl-d14 (surrogate)	66%		
Analysis Date/Time:	11-01-07/19:48		
Analyst Initials:	bds		
Date Extracted:	10/30/2007		
Initial Sample Volume:	880 mL		
Final Volume:	1.0 mL		

PAH-SIM Analytical Batch:

110107P

	Samula Daguito (mg/l)	Reporting Limit (mg/L)	Flags
Compounds	Sample Results (mg/L)		riays
Acenaphthene	< 0.0011	0.0011	
Acenaphthylene	< 0.0011	0.0011	
Anthracene	< 0.00011	0.00011	•
Benzo(a)anthracene	< 0.00011	0.00011	
Benzo(a)pyrene	< 0.00011	0.00011	*
Benzo(b)fluoranthene	< 0.00011	0.00011	
Benzo(g,h,i)perylene	< 0.00011	0.00011	•
Benzo(k)fluoranthene	< 0.00011	0.00011	
Chrysene	< 0.00011	0.00011	
Dibenzo(a,h)anthracene	< 0.00011	0.00011	
Fluoranthene	< 0.0011	0.0011	
Fluorene	< 0.0011	0.0011	
Indeno(1,2,3-cd)pyrene	< 0.000027	0.000027	
2-methylnaphthalene	< 0.0011	0.0011	
Naphthalene	< 0.0011	0.0011	
Phenanthrene	< 0.0011	0.0011	
Pyrene	< 0.0011	0.0011	
Analysis Date/Time:	11-01-07/20:11		
Analyst Initials:	bds	•	Pa
•	Varry Duais	ete Over Dession	Pa

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

6010/7470

Prep Method:

3010A

Client Sample ID:

MW-5

Sample Collection Date/Time:

10/29/07

14:44

Envision Sample Number:

7-14699 water

Sample Received Date/Time:

10/30/07

9:50

Sample Matrix:

Compounds	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
Arsenic	0.02	0.01	
Cadmium	< 0.005	0.005	
Chromium	< 0.01	0.01	
Lead	< 0.01	0.01	
Mercury	< 0.002	0.002	
Nickel	< 0.05	0.05	
Zinc	< 0.05	0.05	
ICP Analysis Date/Time:	10/31/2007 12:32	Hg Analysis Date/Time:	10/30/200

Analyst Initials: Date Digested: Initial Sample Volume: Final Volume: **Analytical Batch:**

gjd 10/30/2007 50 ml 50 ml

103107icp

Hg Analyst Initials: Date Digested: Initial Sample Volume: Final Volume: **Analytical Batch:**

07 13:49 gjd 10/30/2007 50 mL 50 mL 103007hgw

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

Indianapolis, IN 46239 Tel: 317.351.8632

Fax: 317.351.8632 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

Envision Sample Number:

2007-2225

Analytical Method:

8260

Prep Method: Analytical Batch: 5030B 110107VW

Client Sample ID:

DUP

Sample Collection Date/Time: 10/29/07

7-14700

Sample Received Date/Time: 10/30/07 9:50

Sample Matrix:

water

Reporting Limit (mg/l) Compounds Sample Results (mg/L) Flags < 0.1 0.1 Acetone 0.1 < 0.1 Acrolein < 0.1 0.1 Acrylonitrile < 0.005 0.005 Benzene < 0.005 0.005 Bromobenzene 0.005 < 0.005 Bromochloromethane 0.005 < 0.005 Bromodichloromethane 0.005 < 0.005 Bromoform 0.005 Bromomethane < 0.005 n-Butanol < 0.050 0.05 0.01 2-Butanone (MEK) < 0.01 0.005 n-Butylbenzene < 0.005 0.005 sec-Butylbenzene < 0.005 0.005 tert-Butylbenzene < 0.005 0.005 Carbon Disulfide < 0.005 Carbon Tetrachloride < 0.005 0.005 0.005 < 0.005 Chlorobenzene 0.005 < 0.005 Chloroethane 0.05 < 0.050 2-Chloroethylvinylether 0.005 Chloroform < 0.005 0.005 Chloromethane < 0.005 < 0.005 0.005 2-Chlorotoluene 0.005 < 0.005 4-Chlorotoluene 0.005 1,2-Dibromo-3-chloropropane < 0.005 0.005 Dibromochloromethane < 0.005 0.005 < 0.005 1,2-Dibromoethane (EDB) 0.005 Dibromomethane < 0.005 < 0.005 0.005 1,2-Dichlorobenzene 0.005 1.3-Dichlorobenzene < 0.005 0.005 1,4-Dichlorobenzene < 0.005 0.1 trans-1,4-Dichloro-2-butene < 0.1 0.005 < 0.005 Dichlorodifluoromethane

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

8260 continued			
<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	
1,1-Dichloroethene	< 0.005	0.005	
cis-1,2-Dichloroethene	< 0.005	0.005	
trans-1,2-Dichloroethene	< 0.005	0.005	
1,2-Dichloropropane	< 0.005	0.005	
1,3-Dichloropropane	< 0.005	0.005	
2,2-Dichloropropane	< 0.005	0.005	
1,1-Dichloropropene	< 0.005	0.005	
cis-1,3-Dichloropropene	< 0.005	0.005	
trans-1,3-Dichloropropene	< 0.005	0.005	·
Ethylbenzene	< 0.005	0.005	
Ethyl methacrylate	< 0.1	0.1	
Hexachloro-1,3-butadiene	< 0.005	0.005	
n-Hexane	< 0.01	0.01	
2-Hexanone	< 0.01	0.01	
Iodomethane	< 0.01	0.01	
Isopropylbenzene (Cumene)	< 0.005	0.005	
p-isopropyltoluene	< 0.005	0.005	
Methylene chloride	< 0.005	0.005	
4-Methyl-2-pentanone (MIBK)	< 0.01	0.01	
Methyl-tert-butyl-ether	< 0.005	0.005	
Naphthalene	< 0.005	0.005	
n-Propylbenzene	< 0.005	0.005	
Styrene	< 0.005	0.005	
1,1,1,2-Tetrachloroethane	< 0.005	0.005	
1,1,2-Tetrachloroethane	< 0.005	0.005	
Tetrachloroethene	< 0.005	0.005	
Toluene	< 0.005	0.005	
1,2,3-Trichlorobenzene	< 0.005	0.005	
1,2,4-Trichlorobenzene	< 0.005	0.005	
1,1,1-Trichloroethane	< 0.005	0.005	
1,1,2-Trichloroethane	< 0.005	0.005	
Trichloroethene	< 0.005	0.005	
Trichlorofluoromethane	< 0.005	0.005	
	< 0.005	0.005	
1,2,3-Trichloropropane	< 0.005	0.005	
1,2,4-Trimethylbenzene	< 0.005	0.005	
1,3,5-Trimethylbenzene	< 0.003	0.01	
Vinyl acetate	< 0.002	0.002	-
Vinyl chloride	< 0.002	0.005	
Xylene, M&P		0.005	
Xylene, Ortho	< 0.005	0.003	
Xylene (Total)	< 0.01		
Dibromofluoromethane (surrogate)	55.4 54.7	111%	
1,2-Dichloroethane-d4 (surrogate)	51.7	103%	
Toluene-d8 (surrogate)	49.5	99%	
4-bromofluorobenzene (surrogate)	61.3	123%	D 00 600
Analysis Date/Time:	11/01/07/13:10	o Our Baccion	Page 38 of 63
Analyst Initials	tigour Project	s. Our Passion.	

1439 Sadlier Circle West Drive Indianapolis, IN 46239

Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8015M TPH-Ext C8-C36

Prep Method:

3520C

Analytical Batch:

110107E

Client Sample ID:

DUP

7-14700

Sample Collection Date/Time:

10/29/07

Envision Sample Number: Sample Matrix:

water

Sample Received Date/Time:

10/30/07 9:50

Compounds

Sample Results (mg/L)

Reporting Limit (mg/L) 0.1

<u>Flags</u>

TPH--Extended C8-C36 o-Terphenyl (surrogate)

Analysis Date/Time:

Analyst Initials:

Date Extracted:

Final Volume:

0.35

65%

11/2/2007 0:25

gjd

10/31/2007

930 mL

Initial Sample Volume:

1.0 mL

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239

Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

Prep Method:

8015 GRO 5030

Analytical Batch:

103107GW

Client Sample ID:

DUP

Sample Collection Date/Time:

10/29/07

Envision Sample Number:

Compounds

7-14700

Sample Received Date/Time:

10/30/07 9:50

Sample Matrix:

water

Reporting Limit (mg/L)

_.

TPH-Gasoline

Sample Results (mg/L) < 0.22

0.22

<u>Flags</u>

TI TI Gadomio

4-bromofluorobenzene (surrogate) Analysis Date/Time: 107% 10/31/07/21:19

Analyst Initials

tjg

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

Indianapolis, IN 46239 Tel: 317.351.8632

Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8270 BNA/PAH-SIM

Prep Method:

3520C

Analytical Batch:

110107B

Client Sample ID:

DUP

Sample Collection Date/Time:

10/29/07

7-14700

Sample Received Date/Time:

10/30/07 9:50

Envision Sample Number: Sample Matrix:

water

	O In Describe (const)	Devention Limit (mail.)	<u>Flags</u>
<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/L) 0.011	<u>riays</u>
Aniline	< 0.011	0.054	
Benzoic Acid	< 0.054		
Benzyl Alcohol	< 0.022	0.022	
4-Bromophenylphenyl ether	< 0.011	0.011	
Butylbenzylphthalate	< 0.011	0.011	
Carbazole	< 0.022	0.022	
4-Chloro-3-methylphenol	< 0.022	0.022	
4-Chloroaniline	< 0.022	0.022	
bis(2-Chloroethoxy)methane	< 0.011	0.011	
bis(2-Chloroethyl)ether	< 0.011	0.011	
bis(2-Chloroisopropyl)ether	< 0.011	0.011	
2-Chloronaphthalene	< 0.011	0.011	
2-Chlorophenol	< 0.011	0.011	
4-Chlorophenylphenyl ether	< 0.011	0.011	
Dibenzofuran	< 0.011	0.011	
1,2-Dichlorobenzene	< 0.011	0.011	
1,3-Dichlorobenzene	< 0.011	0.011	
1,4-Dichlorobenzene	< 0.011	0.011	
3,3-Dichlorobenzidine	< 0.022	0.022	
2,4-Dichlorophenol	< 0.011	0.011	
Diethylphthalate	< 0.011	0.011	
2,4-Dimethylphenol	< 0.011	0.011	
Dimethylphthalate	< 0.011	0.011	
Di-n-butylphthalate	< 0.011	0.011	
4,6-Dinitro-2-methylphenol	< 0.054	0.054	
2,4-Dinitrophenol	< 0.054	0.054	
2,4-Dinitrotoluene	< 0.011	0.011	
2,6-Dinitrotoluene	< 0.011	0.011	
Di-n-octylphthalate	< 0.011	0.011	
bis(2-Ethylhexyl)phthalate	< 0.0054	0.0054	
Hexachloro-1,3-butadiene	< 0.011	0.011	
Hexachlorobenzene	< 0.0054	0.0054	
Hexachlorocyclopentadiene	< 0.027	0.027	
Hexachloroethane	< 0.011	0.011	Pag
	Vour Proje	cte Our Passion	J

Your Projects. Our Passion.

Page 41 of 63

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indiananolis IN 46239

Indianapolis, IN 46239
Tel: 317.351.8632
Fax: 317.351.8639
www.envisionlaboratories.com

8270 Continued			
<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Isophorone	< 0.011	0.011	
2-Methylphenol (o-Cresol)	< 0.011	0.011	
3&4-Methylphenol	< 0.022	0.022	
2-Nitroaniline	< 0.054	0.054	
3-Nitroaniline	< 0.054	0.054	
4-Nitroaniline	< 0.054	0.054	
Nitrobenzene	< 0.011	0.011	
2-Nitrophenol	< 0.011	0.011	
4-Nitrophenol	< 0.054	0.054	
N-Nitroso-di-n-propylamine	< 0.011	0.011	
N-Nitrosodiphenylamine	< 0.011	0.011	
Pentachlorophenol	< 0.054	0.054	
Phenol	< 0.011	0.011	
1,2,4-Trichlorobenzene	< 0.011	0.011	
2,4,5-Trichlorophenol	< 0.011	0.011	
2,4,6-Trichlorophenol	< 0.011	0.011	•
2-Fluorophenol (surrogate)	29%		
Phenol-d6 (surrogate)	43%		
Nitrobenzene-d5 (surrogate)	63%		
2-Fluorobiphenyl (surrogate)	34%		•
2,4,6-Tribromophenol (surrogate)			1
p-Terphenyl-d14 (surrogate)	14%		
Analysis Date/Time:	11-01-07/20:20	•	
Analyst Initials:	bds		
Date Extracted:	10/30/2007		
Initial Sample Volume:	930 mL		

PAH-SIM Analytical Batch:

Final Volume:

110107P

1.0 mL

Compounds	Sample Results (mg/L)	Reporting Limit (mg/L)	<u>Flags</u>
Acenaphthene	< 0.0011	0.0011	
Acenaphthylene	< 0.0011	0.0011	
Anthracene	< 0.00011	0.00011	
Benzo(a)anthracene	0.00023	0.00011	
Benzo(a)pyrene	0.00012	0.00011	
Benzo(b)fluoranthene	0.00039	0.00011	
Benzo(g,h,i)perylene	< 0.00011	0.00011	
Benzo(k)fluoranthene	< 0.00011	0.00011	
Chrysene	0.00024	0.00011	
Dibenzo(a,h)anthracene	< 0.00011	0.00011	
Fluoranthene	< 0.0011	0.0011	
Fluorene	< 0.0011	0.0011	
Indeno(1,2,3-cd)pyrene	< 0.000024	0.000024	
2-methylnaphthalene	< 0.0011	0.0011	
Naphthalene	< 0.0011	0.0011	
Phenanthrene	< 0.0011	0.0011	
Pyrene	< 0.0011	0.0011	
Analysis Date/Time:	11-01-07/20:39		
Analyst Initials:	bds		Pag
			Гац

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

103107icp

ENVision Project Number:

2007-2225

Analytical Method:

6010/7470

Prep Method:

3010A

Client Sample ID:

DUP

Sample Collection Date/Time:

10/29/07

Envision Sample Number:

7-14700

Sample Received Date/Time:

103007hgw

Analytical Batch:

water

10/30/07

9:50

Sample Matrix:

<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
Arsenic	< 0.01	0.01	
Cadmium	< 0.005	0.005	
Chromium	< 0.01	0.01	
Lead	< 0.01	0.01	
Mercury	< 0.002	0.002	
Nickel	< 0.05	0.05	
Zinc	< 0.05	0.05	
ICP Analysis Date/Time:	10/31/2007 12:36	Hg Analysis Date/Time:	10/30/2007 13:51
Analyst Initials:	gjd	Hg Analyst Initials:	gjd
Date Digested:	10/30/2007	Date Digested:	10/30/2007
Initial Sample Volume:	50 ml	Initial Sample Volume:	50 mL
Final Volume:	50 ml	Final Volume:	50 mL

Analytical Batch:

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

Client Name:

AVANT Group

Project ID:

Ft Wayne / Omni

Client Project Manager:

Mark Anderson

ENVision Project Number:

2007-2225

Analytical Method:

8260

Prep Method: **Analytical Batch:**

5030B 110107VW

Client Sample ID:

TRIP BLANK

Sample Collection Date/Time: 10/29/07

Envision Sample Number:

7-14701

Sample Received Date/Time: 10/30/07 9:50

Sample Matrix:

water

Acetone < 0.1 0.1 Acrolein < 0.1 0.1 Acrylonitrile < 0.1 0.1 Benzene < 0.005 0.005 Bromobenzene < 0.005 0.005 Bromochloromethane < 0.005 0.005 Bromodichloromethane < 0.005 0.005 Bromoform < 0.005 0.005 Bromomethane < 0.005 0.005 n-Butanol < 0.050 0.05 2-Butanone (MEK) < 0.01 0.01	<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
Acrylonitrile < 0.1	Acetone			
Benzene < 0.005	Acrolein	< 0.1		
Bromobenzene < 0.005	Acrylonitrile	< 0.1		
Bromochloromethane < 0.005	Benzene	< 0.005	0.005	
Bromodichloromethane < 0.005	Bromobenzene	< 0.005	0.005	
Bromoform < 0.005	Bromochloromethane			
Bromomethane < 0.005	Bromodichloromethane	< 0.005		•
n-Butanol < 0.050 0.05 2-Butanone (MEK) < 0.01 0.01	Bromoform	< 0.005	0.005	
2-Butanone (MEK) < 0.01 0.01	Bromomethane	< 0.005		
z zatanono (mz. ry	n-Butanol	< 0.050		
0.005	2-Butanone (MEK)	< 0.01	0.01	•
The Daty is defined in the Control of the Control o	n-Butylbenzene	< 0.005	0.005	
sec-Butylbenzene < 0.005 0.005	sec-Butylbenzene	< 0.005		
tert-Butylbenzene < 0.005 0.005	tert-Butylbenzene	< 0.005	0.005	
Carbon Disulfide < 0.005 0.005	Carbon Disulfide	< 0.005	0.005	
Carbon Tetrachloride < 0.005 0.005	Carbon Tetrachloride	< 0.005		
Chlorobenzene < 0.005 0.005	Chlorobenzene	< 0.005		
Chloroethane < 0.005 0.005	Chloroethane	< 0.005		
2-Chloroethylvinylether < 0.050 0.05	2-Chloroethylvinylether	< 0.050		
Chloroform < 0.005 0.005	Chloroform	< 0.005		
Chloromethane < 0.005 0.005	Chloromethane	< 0.005		
2-Chlorotoluene < 0.005 0.005	2-Chlorotoluene	< 0.005		
4-Chlorotoluene < 0.005 0.005	4-Chlorotoluene			
1,2-Dibromo-3-chloropropane < 0.005 0.005	1,2-Dibromo-3-chloropropane	< 0.005		
Dibromochloromethane < 0.005 0.005	Dibromochloromethane	< 0.005		
1,2-Dibromoethane (EDB) < 0.005 0.005	1,2-Dibromoethane (EDB)			
Dibromomethane < 0.005 0.005	Dibromomethane	< 0.005	***	
1,2-Dichlorobenzene < 0.005 0.005	1,2-Dichlorobenzene	< 0.005		
1,3-Dichlorobenzene < 0.005 0.005	1,3-Dichlorobenzene	< 0.005		
1,4-Dichlorobenzene < 0.005 0.005	1,4-Dichlorobenzene			
trans-1,4-Dichloro-2-butene < 0.1 0.1	trans-1,4-Dichloro-2-butene	< 0.1		
Dichlorodifluoromethane < 0.005 0.005	Dichlorodifluoromethane	< 0.005	0.005	

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive

Indianapolis, IN 46239
Tel: 317.351.8632
Fax: 317.351.8639
www.envisionlaboratories.com

8260 continued			
<u>Compounds</u>	Sample Results (mg/L)	Reporting Limit (mg/l)	<u>Flags</u>
1,1-Dichloroethane	< 0.005	0.005	
1,2-Dichloroethane	< 0.005	0.005	•
1,1-Dichloroethene	< 0.005	0.005	
cis-1,2-Dichloroethene	< 0.005	0.005	
trans-1,2-Dichloroethene	< 0.005	0.005	
1,2-Dichloropropane	< 0.005	0.005	
1,3-Dichloropropane	< 0.005	0.005	
2,2-Dichloropropane	< 0.005	0.005	
1,1-Dichloropropene	< 0.005	0.005	
cis-1,3-Dichloropropene	< 0.005	0.005	
trans-1,3-Dichloropropene	< 0.005	0.005	
Ethylbenzene	< 0.005	0.005	
Ethyl methacrylate	< 0.1	0.1	
Hexachloro-1,3-butadiene	< 0.005	0.005	
n-Hexane	< 0.01	0.01	
2-Hexanone	< 0.01	0.01	
lodomethane	< 0.01	0.01	
	< 0.005	0.005	
Isopropylbenzene (Cumene) p-Isopropyltoluene	< 0.005	0.005	
• • • •	< 0.005	0.005	
Methylene chloride 4-Methyl-2-pentanone (MIBK)	< 0.01	0.01	•
• •	< 0.005	0.005	
Methyl-tert-butyl-ether	< 0.005	0.005	
Naphthalene	< 0.005	0.005	,
n-Propylbenzene	< 0.005	0.005	
Styrene	< 0.005	0.005	•
1,1,1,2-Tetrachloroethane	< 0.005	0.005	
1,1,2,2-Tetrachloroethane		0.005	
Tetrachloroethene	< 0.005	0.005	•
Toluene	< 0.005	0.005	•
1,2,3-Trichlorobenzene	< 0.005	0.005	
1,2,4-Trichlorobenzene	< 0.005	0.005	
1,1,1-Trichloroethane	< 0.005	0.005	• .
1,1,2-Trichloroethane	< 0.005	0.005	
Trichloroethene	< 0.005	0.005	
Trichlorofluoromethane	< 0.005	0.005	
1,2,3-Trichloropropane	< 0.005		
1,2,4-Trimethylbenzene	< 0.005	0.005	
1,3,5-Trimethylbenzene	< 0.005	0.005	
Vinyl acetate	< 0.01	0.01	
Vinyl chloride	< 0.002	0.002	
Xylene, M&P	< 0.005	0.005	
Xylene, 0rtho	< 0.005	0.005	
Xylene (Total)	< 0.01	0.01	
Dibromofluoromethane (surrogate)		114%	
1,2-Dichloroethane-d4 (surrogate)	41.7	83%	
Toluene-d8 (surrogate)	51.2	102%	
4-bromofluorobenzene (surrogate)	56.1	112%	
Analysis Date/Time:	11/01/07/13:29	to Our Duneton	Page 45 of 63
Analyst Initials	tjgour Projec	ts. Our Passion.	

IL ELAP / NELAC Accreditation # 100292

November 02, 2007

Mr. David Norris

ENVISION LABORATORIES, INC.

1439 Sandlier Cir. W. Drive Indianapolis, IN 46239

Project ID: 2007-2225

First Environmental File ID: 7-4857 Date Received: October 31, 2007

Dear Mr. David Norris:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

All Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met unless otherwise noted. QA/QC documentation and raw data will remain on file for future reference. Our accreditation number is 100292 and our current certificate is number 001767: effective 06/11/07 through 02/28/08.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at (630) 778-1200 or neal@firstenv.com.

Sincerely,

Neal Cleghorn Project Manager

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Case Narrative

ENVISION LABORATORIES, INC.

Project ID:

2007-2225

First Environmental File ID: 7-4857

Date Received: October 31, 2007

Flag	Description	Flag	Description
<	Analyte not detected at or above the reporting limit.	' L+	LCS recovery outside control limits; high bias.
В	Analyte detected in associated method blank.	L-	LCS recovery outside control limits; low bias.
C	Identification confirmed by GC/MS.	M	MS recovery outside control limits; LCS acceptable.
D	Surrogates diluted out; recovery not available.	M+	MS recovery outside control limits high bias; LCS acceptable.
E	Estimated result; concentration exceeds calibration range.	M-	MS recovery outside control limits low bias; LCS acceptable.
. F	Field measurement.	N	Analyte is not part of our NELAC accreditation.
		ND	Analyte was not detected using a library search routine; No calibration standard was analyzed.
G	Surrogate recovery outside control limits; matrix effect.	P	Chemical preservation pH adjusted in lab.
Н	Analysis or extraction holding time exceeded.	Q	The analyte was determined by a GC/MS database search.
J	Estimated result; concentration is less than calib range.	S	Analyte was sub-contracted to another laboratory for analysis.
K	RPD outside control limits.	Т	Sample temperature upon receipt exceeded 0-6°C
RL	Routine Reporting Limit (Lowest amount that can be detected when routine weights/volumes are used without dilution.)	W	Reporting limit elevated due to sample matrix.

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

Sample Batch Comments:

Sample acceptance criteria were met.

Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

ENVISION LABORATORIES, INC.

Date Collected:

10/29/07

Project ID:

2007-2225

Time Collected: 17:10

Sample ID:

7-14695-MW-1

Date Received:

10/31/07

Sample No:

7-4857-001

Analyte		Result	R.L.	Units	Flags
Polychlorinated biphenyls (PCBs) Analysis Date: 11/01/07	Method: 8082		Preparation Preparation D	Method 3510 Date: 11/01/07	0C
Aroclor 1016	,	< 0.50	0.50	ug/L	
Aroclor 1221		< 0.50	0.50	ug/L	
Aroclor 1232		< 0.50	0.50	ug/L	
Aroclor 1242		< 0.50	0.50	ug/L	
Aroclor 1248		< 0.50	0.50	ug/L	
Aroclor 1254		< 0.50	0.50	ug/L	
Aroclor 1260		< 0.50	0.50	ug/L	
Tetrachloro-m-xylene (Surr)		92	33-109	%	
Decachlorobiphenyl (Surr)		63	28-116	%	

First Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

ENVISION LABORATORIES, INC.

2007-2225

Project ID: Sample ID:

7-14696-MW-2

Sample No:

7-4857-002

Date Collected: 10/29/07

Time Collected: 16:10

Date Received:

10/31/07

Analyte		Result	R.L.	Units	Flags
Polychlorinated biphenyls (PCBs) Analysis Date: 11/01/07	Method: 8082		Preparation Preparation D		
Aroclor 1016		< 0.50	0.50	ug/L	
Aroclor 1221		< 0.50	0.50	ug/L	
Aroclor 1232		< 0.50	0.50	ug/L	
Aroclor 1242		< 0.50	0.50	ug/L	
Aroclor 1248		< 0.50	0.50	ug/L	
Aroclor 1254		< 0.50	0.50	ug/L	
Aroclor 1260		< 0.50	0.50	ug/L	
Tetrachloro-m-xylene (Surr)		86	33-109	%	
Decachlorobiphenyl (Surr)		60	28-116	%	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

ENVISION LABORATORIES, INC.

Project ID: Sample ID: 2007-2225 7-14697-MW-3

Sample No:

7-4857-003

Date Collected: 10/29/07

Time Collected: 11:05

Date Received:

10/31/07

Analyte		Result	R.L.	Units	Flags	
Polychlorinated biphenyls (PCBs) Analysis Date: 11/01/07	Method: 8082	, , , , , , , , , , , , , , , , , , , ,	Preparation Method 3510C Preparation Date: 11/01/07			
Aroclor 1016		< 0.50	0.50	ug/L	÷	
Aroclor 1221		< 0.50	0.50	ug/L		
Aroclor 1232		< 0.50	0.50	ug/L		
Aroclor 1242		< 0.50	0.50	ug/L		
Aroclor 1248	•	< 0.50	0.50	ug/L		
Aroclor 1254		< 0.50	0.50	ug/L		
Aroclor 1260		< 0.50	0.50	ug/L		
Tetrachloro-m-xylene (Surr)		102	33-109	%		
Decachlorobiphenyl (Surr)		93	28-116	%		

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

ENVISION LABORATORIES, INC.

Date Collected: 10/29/07

Project ID:

2007-2225

Time Collected: 13:30

10/31/07

Sample ID:

7-14698-MW-4

Date Received:

Sample No:

7-4857-004

Analyte		Result	R.L.	Units	Flags
Polychlorinated biphenyls (PCBs) Analysis Date: 11/01/07	Method: 8082		Preparation Method 3510C Preparation Date: 11/01/07		
Aroclor 1016		< 0.50	0.50	ug/L	
Aroclor 1221		< 0.50	0.50	ug/L	
Aroclor 1232		< 0.50	0.50	ug/L	
Aroclor 1242		< 0.50	0.50	ug/L	
Aroclor 1248		< 0.50	0.50	ug/L	
Aroclor 1254		< 0.50	0.50	ug/L	
Aroclor 1260		< 0.50	0.50	ug/L	
Tetrachloro-m-xylene (Surr)		79	33-109	%	
Decachlorobiphenyl (Surr)		84	28-116	%	

First Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

ENVISION LABORATORIES, INC.

Date Collected: 10/29/07

Project ID:

2007-2225

Time Collected:

10/31/07

Sample ID:

7-14700-MW-Dup

Date Received:

Sample No:

7-4857-005

Analyte		Result	R.L.	Units	Flags	
Polychlorinated biphenyls (PCBs) Analysis Date: 11/01/07	Method: 8082		Preparation Method 3510C Preparation Date: 11/01/07			
Aroclor 1016		< 0.50	0.50	ug/L		
Aroclor 1221		< 0.50	0.50	ug/L		
Aroclor 1232		< 0.50	0.50	ug/L		
Aroclor 1242		< 0.50	0.50	ug/L		
Aroclor 1248		< 0.50	0.50	ug/L		
Aroclor 1254		< 0.50	0.50	ug/L		
Aroclor 1260		< 0.50	0.50	ug/L		
Tetrachloro-m-xylene (Surr)		92	33-109	%		
Decachlorobiphenyl (Surr)		70	28-116	% ୍		

Client: ENWision Laboratories, Inc. 1439 Sadiler Circle West Drive Indianapolis, IN 46239 Report Report To: DQU'O NOW/S Lab Contact: Phone: Sampled by: Pool. Numbor: Sampled by: Sample ID Code Comp(G) Matrix 1-1469 - MW-3 1024-0 17410 C	
Project Name: Sampled by: Project Number: Project Name: Sampled by: Pro. Number: Coll. Coll. Comp (c) Mate Time Grab (g) 16/0 17/0 330 1944 1744 1945 1955 19	
voice Address: piect Name: QOOT-QQS b Contact: NQC Required: (circle if applicab Level III L	
adlier Circle We ess: ired: (circle if applicab Level III Level I	
Cie We cie We Nati	<u>)</u>
Time	, 1 2
REG	! } }
REQUESTED To the control of the con	j I
Phone: (317) PARAMETERS Parameters Received by:)
HCI HNO ₃	ENVision Proj#:
Sample Integrity: Cooler Temp: Cooler Temp: Custody Seal: Yes Envision provided by VOC vials free of he pH checked? Yes I had the none By an one By an one Cooler Temp: Custody Seal: Yes Envision provided by VOC vials free of he pH checked? Yes I No one ENV Date Date	Proj#:
Sample Integril Cooler Temp: Conjer Temp: Cooler Temp: Co	
Phone: (317) 351-8639 Fax: (317) 351-8639 Sample Integrity: Cooler Temp:	Page
1-8639 1-8639 1-8639 2 Yes No Yes No Yes No Of head-space: Yes No N Yes No N/A ENVision Sample ID Time 1: 10	of
Page 53 of 63	

www.envisionlaboratories.com

8260 Quality Control Data

ENVision Batch Number:

110107VW

Method Blank (MB):	MB Results (ug/L)	Rep Lim (ug/L)	<u>Flag</u>
Acetone	< 100	100	
Acrolein .	< 100	100	
Acrylonitrile	< 100	100	
Benzene	< 5	5	
Bromobenzene	< 5	5	
Bromochloromethane	< 5	5	
Bromodichloromethane	< 5	5	
Bromoform	< 5	5	
Bromomethane	< 5	5	
n-Butanol	< 50	50	
2-Butanone (MEK)	< 10	10	
n-Butylbenzene	< 5	5	
sec-Butylbenzene	< 5	5	
tert-Butylbenzene	< 5	5	
Carbon Disulfide	< 5	5	
Carbon Tetrachloride	< 5	5	
Chlorobenzene	< 5	5	
Chioroethane	< 5	5	
2-Chloroethylvinylether	< 50	50	
Chloroform	< 5	5	
Chloromethane	< 5	5	
2-Chlorotoluene	< 5	5	
4-Chlorotoluene	< 5	5	
1,2-Dibromo-3-chloropropane	< 5	5	•
Dibromochloromethane	< 5	5	
1,2-Dibromoethane (EDB)	< 5	5	
Dibromomethane	< 5	5	
1,2-Dichlorobenzene	< 5	5	
1,3-Dichlorobenzene	< 5	5 5	
1,4-Dichlorobenzene	< 5	100	
trans-1,4-Dichloro-2-butene	< 100	5	
Dichlorodifluoromethane	< 5 < 5	5	
1,1-Dichloroethane		5	•
1,2-Dichloroethane	< 5 < 5	5	
1,1-Dichloroethene	< 5 < 5	5	
cis-1,2-Dichloroethene	< 5	5	
trans-1,2-Dichloroethene	< 5	5	
1,2-Dichloropropane	< 5	5	
1,3-Dichloropropane	< 5	5	
2,2-Dichloropropane	· <5	5	
1,1-Dichloropropene	. <5	5	
cis-1,3-Dichloropropene	< 5	5	
trans-1,3-Dichloropropene	< 5	5	
Ethylbenzene Ethyl methacrylate	< 100	100	
Etnyi methacrylate	~ 100	100	

www.envisionlaboratories.com

<u> Method Blank (MB):</u>	MB Results (ug/L)	Rep Lim (ug/L)
Hexachloro-1,3-butadiene	< 5	5
2-Hexanone	< 10	10
n-Hexane	< 10	10
Iodomethane	< 10	10
Isopropylbenzene (Cumene)	< 5	5
p-Isopropyltoluene	< 5	5
Methylene chloride	< 5	5
4-Methyl-2-pentanone (MIBK)	< 10	10
Methyl-tert-butyl-ether	< 5	5
Naphthalene	< 5	5
n-Propylbenzene	< 5	5
Styrene	< 5	5
1,1,1,2-Tetrachloroethane	< 5	5
1,1,2,2-Tetrachloroethane	< 5	5
Tetrachloroethene	< 5	5
Toluene	< 5	5
1,2,3-Trichlorobenzene	< 5	5
1,2,4-Trichlorobenzene	< 5	5
1,1,1-Trichloroethane	< 5	5
1,1,2-Trichloroethane	< 5	5
Trichloroethene	< 5	5
Trichlorofluoromethane	< 5	5
1,2,3-Trichloropropane	< 5	5
1,2,4-Trimethylbenzene	< 5	5
1,3,5-Trimethylbenzene	< 5	5
Vinyl acetate	< 10	10
Vinyl chloride	< 2	2
Xylene, M&P	< 5	5
Xylene, 0rtho	< 5	5
Xylene (total)	< 10	10
Dibromofluoromethane (surrogate)	124%	
1,2-Dichloroethane-d4 (surrogate)	90%	
Toluene-d8 (surrogate)	99%	
4-bromofluorobenzene (surrogate)	122%	
Analysis Date/Time:	11/01/07/07:07	
Analyst Initials	tjg	

		LCS/LCSD Conc.	LCSD Result	LCS	LCSD		
LCS/LCSD	LCS Results (ug/l)	<u>(ug/l)</u>	<u>(ug/l)</u>	Rec.	Rec.	<u>RPD</u>	<u>Flaq</u>
1.1-Dichloroethene	56.8	50	58.7	114%	117%	3.3%	
Benzene	45.8	50	51	92%	102%	10.7%	
Trichloroethene	54.6	50	57.8	109%	116%	5.7%	
Toluene	47	50	50.5	94%	101%	7.2%	
Chlorobenzene	54	50	59.3	108%	119%	9.4%	
Dibromofluoromethane (surrogate)	93%		91%				
1,2-Dichloroethane-d4 (surrogate)	86%		85%				
Toluene-d8 (surrogate)	87%		85%				
4-bromofluorobenzene (surrogate)	102%		100%				
Analysis Date/Time:	11/01/07/06:29		11/01/07/06:48		Pan	e 55 c	of 63

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

Analyst Initials

tjg

www.envisionlaboratories.com

8015 TPH-Extended Range Quality Control Data

ENVision Batch Number:

103107DW

Method Blank (MB): TPH-Extended Range o-Terphenyl (surrogate)	MB Results (ug/L) < 100 76%	Reporting Limit (ug/L) 100	Flag
Analysis Date/Time: Analyst Initials:	10/31/2007 4:04 gjd		
Date Extracted: Initial Sample Volume: Final Volume:	10/30/2007 1000 mL 1.0 mL		

LCS/LCSD TPH-Extended Range o-Terphenyl (surrogate) Analysis Date/Time:	LCS Results (ug/L) 866.91 102% 10/31/2007 4:33	LCS/LCSD Conc. (ug/L) 1000	LCSD Results (ug/L) 698.33 94% 10/31/2007 5:03	Rec. 87%	Rec. 70%	RPD 21.5%	Flag
Analyst Initials: Date Extracted: Initial Sample Volume: Final Volume:	gjd 10/30/2007 1000 mL . 1.0 mL		gjd 10/30/2007 1000 mL 1.0 mL				

1439 Sadlier Circle West Drive Indianapolis, IN 46239

Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8015 TPH-Gasoline Quality Control Data

ENVision Batch Number:

103107GW

Method Blank (MB):

MB Results (mg/L)

Rep Lim 0.22 mg/L Flag

TPH-Gasoline

< 0.22 mg/L 97%

4-bromofluorobenzene (surrogate)

10/31/07/16:05

Analysis Date/Time: Analyst Initials:

tjg

Laboratory Control Standard (LCS):

LCS Results (mg/L)

LCS Conc. (mg/L)

TPH-Gasoline

10.1

10

% Rec 101

Flag

4-bromofluorobenzene (surrogate)

Analyst Initials:

80%

Analysis Date/Time:

10/31/07/14:49

tjg

Matrix Spike/Matrix Spike Dup (MS/MSD)

Sample Results (mg/L)

MS Res mg/L MSD Res mg/L

<u>Rec</u>

97.6

TPH-Gasoline

10.6 9.76

Conc. 10 mg/L

Spike

<u>Rec</u> % D Flag 106 8.25

4-bromofluorobenzene (surrogate)

107%

98%

93%

Analysis Date/Time:

10/31/07/21:19 tjg

10/31/07/22:03 10/31/07/22:22

Analyst Initials: Originial Sample Number Spiked:

7-14700

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639

www.envisionlaboratories.com

6010B/7470A Metals Quality Control Data

ENVision Batch Number:

Analyst Initials:

103107icp / 103007hgw

Method Blank (MB):	MB Results (mg/L)	Rep Lim (mg/L)	<u>Flag</u>
Arsenic	< 0.01	0.01	
Cadmium	< 0.005	0.005	
Chromium	< 0.01	0.01	
Lead	< 0.01	0.01	
Mercury	< 0.002	0.002	
Nickel	< 0.05	0.05	
Zinc	< 0.05	0.05	
Analysis Date/Time:	10/31/07 10:54icp / 10/30/07	12:58hg	
Analyst Initials:	gjd		

Laboratory Control Standard (LCS):	LCS Results(mg/L)	LCS Conc(mg/L)	% Rec	<u>Flag</u>
Arsenic	0.53	0.50	106	
Cadmium	0.52	0.50	104	
Chromium	0.52	0.50	104	
Lead	0.53	0.50	106	
Mercury	0.0049	0.005	98	
Nickel	0.52	0.50	104%	
Zinc	0.53	0.50	106%	
Analysis Date/Time:	10/31/07 11:02icp / 10/30/07	13:01hg		

gjd

Matrix Spike/Matrix Spike Dup (MS/MSD)	Sam	ple Results (mg/L)	MS Res(mg/L)	MSD_Res	Spike C	MS Rec	MSD Rec	<u>% D</u>	<u>Flag</u>
Arsenic		0.00	0.51	0.52	0.50	102%	104%	1.942	
Cadmium	ð	0.00	0.48	0.48	0.50	96%	96%	0	
Chromium		0.09	0.59	0.59	0.50	100%	100%	0	
Lead		0.50	0.97	0.97	0.50	94%	94%	0	
Mercury		0	0.0056	0.0056	0.005	112%	112%	0	
Nickel		0.07	0.55	0.55	0.50	96%	96%	0	
Zinc		0.60	1.08	1.08	0.50	96%	96%	0	
Originial Sample Number Spiked:	7-	14491icp / 7-14146hg							

10/31/07 12:56icp / 10/30/07 13:05hg Analysis Date/Time:

Analyst Initials:

www.envisionlaboratories.com

8270 Quality Control Data

ENVision Batch Number:

103007BW

BNA Method Blank (MB):	Method Blank Results (mg/L)	Reporting Limit (mg/L)	Flag
Aniline	< 0.01	0.01	
Benzoic Acid	< 0.05	0.05	
Benzyl Alcohol	< 0.02	0.02	
4-Bromophenylphenyl ether	< 0.01	0.01	
Butylbenzylphthalate	< 0.01	0.01	
Carbazole	< 0.02	0.02	
4-Chioro-3-methylphenol	< 0.02	0.02	
4-Chloroaniline	< 0.02	0.02	
bis(2-Chloroethoxy)methane	< 0.01	0.01	
bis(2-Chloroethyl)ether	< 0.01	0.01	
bis(2-Chloroisopropyl)ether	< 0.01	0.01	
2-Chloronaphthalene	< 0.01	0.01	
2-Chlorophenol	< 0.01	0.01	
4-Chlorophenylphenyl ether	< 0.01	0.01	
Dibenzofuran	< 0.01	0.01	
1,2-Dichlorobenzene	< 0.01	0.01	
1,3-Dichlorobenzene	< 0.01	0.01	
1,4-Dichlorobenzene	< 0.01	0.01	
3,3-Dichlorobenzidine	< 0.02	0.02	
2,4-Dichlorophenol	< 0.01	0.01	
Diethylphthalate	< 0.01	0.01	
2,4-Dimethylphenoi	< 0.01	0.01	
Dimethylphthalate	< 0.01	0.01	
Di-n-butylphthalate	< 0.01	0.01	
4,6-Dinitro-2-methylphenol	< 0.05	0.05	
2,4-Dinitrophenol	< 0.05	0.05	
2,4-Dinitrotoluene	< .01	0.01	
2,6-Dinitrotoluene	< 0.01	0.01	
Di-n-octylphthalate	< 0.01	0.01	
bis(2-Ethylhexyl)phthalate	< 0.005	0.005	
Hexachloro-1,3-butadiene	< 0.01	0.01	
Hexachlorobenzene	< 0.005	0.005	
Hexachlorocyclopentadiene	< 0.025	0.025	
Hexachloroethane	< 0.01	0.01	
Isophorone	< 0.01	0.01	
2-Methylphenol (o-Cresol)	< 0.01	0.01	
3&4-Methylphenol	< 0.02	0.02	
2-Nitroaniline	< 0.05	0.05	
3-Nitroaniline	< 0.05	0.05	
4-Nitroaniline	< 0.05	0.05	
Nitrobenzene	< 0.01	0.01	
2-Nitrophenol	< 0.01	0.01	
4-Nitrophenol	< 0.05	0.05	
N-Nitroso-di-n-propylamine	< 0.01	0.01	
N-Nitrosodiphenylamine	< 0.01	0.01	
	Van	- Drojecte	Our Dac

8270 QC Continued...

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

	Method Blank Results (mg/L)	Reporting Limit (mg/L)	
Pentachlorophenol	< 0.05	0.05	
Phenol	< 0.01	0.01	
1,2,4-Trichlorobenzene	< 0.01	0.01	
2,4,5-Trichlorophenol	< 0.01	0.01	
2,4,6-Trichlorophenol	< 0.01	0.01	
2-Fluorophenol (surrogate)	69%		
Phenol-d6 (surrogate)	80%		
Nitrobenzene-d5 (surrogate)	77%		
2-Fluorobiphenyl (surrogate)	91%		
4.6 Tribromonhenol (surrogate)	82%		

2,4,5-Trichlorophenol	< 0.01	0.01
2,4,6-Trichlorophenol	< 0.01	0.01
2-Fluorophenol (surrogate)	69%	
Phenol-d6 (surrogate)	80%	
Nitrobenzene-d5 (surrogate)	77%	
2-Fluorobiphenyl (surrogate)	91%	
2,4,6-Tribromophenol (surrogate)	82%	
p-Terphenyl-d14 (surrogate)	119%	
Analysis Date/Time:	11-01-07/15:28	
Analyst Initials:	bds	
Date Extracted:	10/30/2007	
Initial Sample Volume:	1000 mL	
Final Volume:	1.0 mL	

	Method Blank	Reporting	
PAH-SIM Method Blank (MB):	Result (mg/L)	Limit (mg/L)	Flag
Acenaphthene	< 0.001	0.001	
Acenaphthylene	< 0.001	0.001	
Anthracene	< 0.0001	0.0001	
Benzo(a)anthracene	< 0.0001	0.0001	
Benzo(a)pyrene	< 0.0001	0.0001	
Benzo(b)fluoranthene	< 0.0001	0.0001	
Benzo(g,h,i)perylene	< 0.0001	0.0001	
Benzo(k)fluoranthene	< 0.0001	0.0001	
Chrysene	< 0.0001	0.0001	
Dibenzo(a,h)anthracene	< 0.0001	0.0001	
Fluoranthene	< 0.001	0.001	
Fluorene	< 0.001	0.001	
Indeno(1,2,3-cd)pyrene	< 0.000022	0.000022	
2-methylnaphthalene	< 0.001	0.001	
Naphthalene	< 0.001	0.001	
Phenanthrene	< 0.001	0.001	
Pyrene	· < 0.001	0.001	
Analysis Date/Time:	11-01-07/17:52	•	
Analyst Initials	bds	•	

Flag

1439 Sadlier Circle West Drive Indianapolis, IN 46239 Tel: 317.351.8632 Fax: 317.351.8639 www.envisionlaboratories.com

8270 QC continued...

LCS/LCSD	LCS Result (ug/L)	LCS Conc. (ug/L)	LCSD Result (ug/L)	LCS Recovery	LCSD Recovery	RPD	Flag
Acenaphthene	40.37	50	39.23	80.7%	78.5%	2.9%	
4-Chloro-3-methylphenol	82.41	100	79.06	82.4%	79.1%	4.1%	
2-Chlorophenol	66.86	100	65.47	66.9%	65.5%	2.1%	
1,4-Dichlorobenzene	28.31	50	29.23	56.6%	58.5%	3.2%	
2,4-Dinitrotoluene	35.36	50	33.15	70.7%	66.3%	6.5%	
4-Nitrophenol	44.90	100	39.68	44.9%	39.7%	12.3%	
N-Nitroso-di-n-propylamine	36.80	50	34.15	73.6%	68.3%	7.5%	
Pentachlorophenol	39.68	100	40.11	39.7%	40.1%	1.1%	
Phenol	70.16	100	62.54	70.2%	62.5%	11.5%	
Pyrene	45.34	50	49.45	90.7%	98.9%	8.7%	
1,2,4-Trichlorobenzene	31.35	50	31.44	62.7%	62.9%	0.3%	
2-Fluorophenol (surrogate)	60%		56%				
Phenol-d6 (surrogate)	73%		64%				
Nitrobenzene-d5 (surrogate)	77%		72%				
2-Fluorobiphenyl (surrogate)	87%		82%				
2,4,6-Tribromophenoi (surrogate)	67%		67%				
p-Terphenyl-d14 (surrogate)	96%		107%		•		
Analysis Date/Time:	11-01-07/16:33		11-01-07/17:06				
Analyst Initials:	bds		bds 10/30/2007				
Date Extracted:	10/30/2007		10/30/2007 1000 mL				
Initial Sample Volume: Final Volume:	1000 mL 1.0 mL		1.0 mL				

www.envisionlaboratories.com

Flag Number

Comments

Surrogate recovery is biased low. No additional sample was available for re-extraction. BDS 11-02-07

201-3225 Lof 1 **CHAIN OF CUSTODY RECORD**

ENVision Laboratories, Inc. 1439 Sadlier Circle West Drive Indianapolis, IN	ries, Inc.	1439 5	adlier Cir	cle West Di	ive Inc	lianapoli		5239 F	hone: (3	317) 351	-8632	Fax: (46239 Phone: (317) 351-8632 Fax: (317) 351-8639	3639	
Client: ANA NT	In	Invoice Address:	:s	Game.			REQUE	STED P	REQUESTED PARAMETERS		X				
Report 508 Incentive Dr. Project Name:		oject Nam		-				-				Sal	Sample Integrity:	ر <u>ب</u>	
Fd - Wayne 46825		#7. Wayne		CMn 1				9	0	NO SECTION OF THE PROPERTY OF	×,	Coole (Circle)	Cooler Temp: (Circle)	, d	
Report To: M. Anderson		Lab Contact:	Dave	·		/5	/0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				S S		(E) No	
Phone: 260 - 497 - 7620		Sampled by:		NEA		रें	2/2	>//	702		\	N O	lision provided vials free of I	ENVIsion provided bottles: Yes No V/A VOC vials free of head-space: Yes No N/A	
Fax: 84 11/2/07		O. Numbe	P.O. Number: 9 7-7	4-165	\$\ _A_				Z)		` '	됩	pH checked? Yes No N/A	No N/A	
Desired TAT: (Pease Circle One) 1-2 days (3-6 days)		A/QC Requ	QA/QC Required: (circle if a Level III	if applicable) Level IV	XX	2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ty		riease i contain	Please indicate number of Containers per preservativ	Please indicate number of containers per preservative below	мс	
Sample ID	Coll. Date	Coll. Time	Comp (C) Grab (G)	Matrix				•		HKO ³ HCI	[‡] OS ^Z H	НОБИ ТэґіТО	Yone M	ENVision Sample ID	
1-WW	041 40/62 01	740	\mathcal{S}	420	×	×	X	X	~`	-4			3 /	559+	
12-mm		1610			X	X	X	X	\ \	7			3 /4	969	
Mw -3		2 70			×	メラ	Χ-	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	J			4	+52)	
Mw -4		1330			X	$\frac{\lambda}{\lambda}$	X	X	\ \	ব			3	X 597	
Mw -5		五五	·		X	\times	×	X	· ·	7			2	4 642	
90 P					X	X	X	X	<u> </u>	4			2	1700	
TRIP	A	1	4>	A		×				7				1701	
															į
			,												
Comments:		-										1			
Relinquished by:	ed by:			Date	Ĭ <u>I</u>	Time		C	seceived by:	ðy:		-	Date	Time	г
West Jach			1	19/2/07	디	001		No.	\Rightarrow	Lella		9	40 0x	4:50	
				•				1	3						\vdash